
PIC Application Notes

Page 42 • PIC Application Notes • TechTools

Introduction. This application note describes direct and indirect address-
ing and shows a method for avoiding the gaps in the PIC16C57’s banked
memory.

Direct Addressing. PIC microcontrollers have 32 or 80 bytes of RAM,
which Microchip refers to as file registers. The first seven registers (eight
in the case of the 28-pin PIC’s) are mapped to special functions, such as
the real-time clock/counter (RTCC), status bits, and input/output (I/O)
ports. Figure 1 shows a simplified memory map.

The simplest way to manipulate the contents of a PIC’s RAM is to specify
a register address in an instruction, like so:

m o v 010h, #100

This instruction, which moves the decimal number 100 into register 10
hexadecimal (h), is an example of direct addressing. Most of the
instructions in a typical PIC program use this addressing mode.

The TechTools assembler has several helpful features for direct ad-

Figure 1. Simplified memory map of PIC’s 16C54 through ’57.

Address
(hex) Description

8Ð1F General-purpose RAM (’54, ’55, ’56) and RAM bank 0 of ’57

indirect Reads/writes address pointed to by fsr. 0

rtcc Real-time clock/counter. 1

pc Program counterÑ9 to 1 1 bits wide; lower 8 may be read/written. 2

status Flag bits for arithmetic operations, sleep and reset, and ROM page selects. 3

fsr Pointer; address of data accessed through indirect. 4

ra I/O port ra. 5

rb I/O port rb. 6

rc I/O port rc on Õ55 and Õ57; general-purpose register on Õ54 and Õ56. 7

RAM Banks 1–3, 16C57

RAM warp; reads and writes to 0ÐF. 20Ð2F

RAM bank 1 (Õ57 only)30Ð3F

RAM warp; reads and writes to 0ÐF. 40Ð4F

RAM bank 2 (Õ57 only)50Ð5F

RAM warp; reads and writes to 0ÐF. 60Ð6F

RAM bank 3 (Õ57 only)70Ð7F

7: Direct & Indirect Addressing

Direct & Indirect
Addressing

PIC Application Notes

TechTools • PIC Application Notes • Page 43

APPS

dressing. The first of these is labeling. Instead of referring to registers by
address, you may assign names to them:

counter = 0 1 0 h ;Program header
.
.
.
m o v counter, #100

Labeled memory locations are often called variables. They make a
program more understandable and easier to modify. Suppose you
needed to change the location in which the counter data was stored.
Without the label, you would have to rely on your text editor’s search-
and-replace function (which might also change other numbers contain-
ing “10”). With a label, you could change the counter = ... value in the
program header only.

You can also define variables without specifying their address by using
the ds (define space) directive:

o r g 8 ;Start above special registers.
counter d s 1 ;One byte labeled “counter.”

.

.

.
m o v counter, #100

Using ds assigns the label to the next available register. This ensures
that no two labels apply to the same register, making variable assign-
ments more portable from one program to another. The only caution in
using ds is that you must set the origin using the org directive twice; once
for the starting point of variables in RAM, and again (usually at 0) for the
starting point of your program in ROM.

Labels can be assigned to individual bits in two ways. First, if the bit
belongs to a labeled byte, add .x to the label, where x is the bit number
(0–7). Or assign the bit its own label:

L E D = ra.3 ;Bit 3 of port ra controls LED.

7: Direct & Indirect Addressing

PIC Application Notes

Page 44 • PIC Application Notes • TechTools

The TechTools assembler has predefined labels for the special-purpose
registers, and the bits of the status register. See your manual for a list.

Indirect Addressing. The registers used in direct addressing are set
forever when the program is burned into the PIC’s ROM. They cannot
change. However, many powerful programming techniques are based
on computing storage locations. Consider a keyboard buffer. If key-
strokes can’t be processed immediately, they are stored in sequential
bytes of memory. Pointers—variables containing addresses of other
variables—track the locations of data entered and data processed.

The PIC’s indirect addressing mode allows the use of pointers and the
high-level data structures that go with them, such as stacks and queues.
Using indirect addressing for the earlier example (writing 100 to register
10h) would look like this:

m o v fsr, #010h ;Set pointer to 10h.
m o v indirect, #100 ;Store 100 to indirect.

The value in the file select register (fsr; register 04h) is used as the
address in any instruction that reads/writes indirect (register 00h). So

7 6 5 4 3 2 1 0

address, 0ÐFh

banked memory enable;
1 = on, 0 = off

bank select, 0Ð3h

unused; reads as 1

Memory
Register

banks:

0 10h to 1Fh

1 30h to 3Fh

2 50h to 5Fh

3 70h to 7Fh

Figure 2. The 16C57
file-select register.

7: Direct & Indirect Addressing

PIC Application Notes

TechTools • PIC Application Notes • Page 45

APPS

storing 10h in the fsr and then writing 100 to indirect is the same as writing
100 to address 10h.

A more practical example would be to store a series of values from an
I/O port to sequential registers in memory. All it takes is a loop like this:

m o v pointer, #010h ;Set start address.
: loop m o v fsr, pointer ;Put pointer into fsr.

m o v indirect, rb ;Move rb to indirect.
i nc pointer ;pointer = pointer + 1.
c j b pointer,#01Fh,: loop

This fragment assumes that a variable named pointer was declared
previously (using =, equ, or ds), and that rb is set for input. The loop will
rapidly fill registers 10h through 1Fh with data samples from rb.

PIC’s with 32 bytes of RAM (’54, ’55, and ’56) have a five-bit-wide fsr.
Since all registers are eight bits wide, the highest three bits of the fsr in
these devices are fixed, and always read as 1’s. Keep this in mind if you
plan to perform comparisons (such as the last line of the example above)
directly on the fsr. It will always read 224 (11100000b) higher than the
actual address it points to.

The 16C57 has 80 bytes of RAM and a seven-bit-wide fsr. The highest
bit of its fsr is fixed and reads as a 1. Seven bits allows for 128 addresses,
but only 80 are used. The remaining 48 addresses are accounted for by
three 16-byte gaps in the 57’s memory map. See the RAM warps in figure
1.

Because these warps map to the lowest file registers of the PIC, they can
cause real trouble by altering data in the special-purpose registers. To
avoid this problem, consider using a subroutine to straighten out the
memory map and avoid the warps. Below is an excerpt from a program
that uses the registers from 10h on up as a storage buffer for up to 64
characters of ASCII text. For the purposes of the program, address10h
is location 0 in the buffer; 7F is location 63.

When the program needs to write a value representing a position in the
buffer to the fsr, it puts the value into the w register and calls buf_ptr
(buffer pointer).

7: Direct & Indirect Addressing

PIC Application Notes

Page 46 • PIC Application Notes • TechTools

buf_ptr m o v temp ,w
m o v fsr, temp
c jae temp,#030h, :bank3
c jae temp,#020h, :bank2
c jae temp,#010h, :bank1
j m p :bank0

:bank3 a d d fsr ,#010h
:bank2 a d d fsr ,#010h
:bank1 a d d fsr ,#010h
:bank0 a d d fsr ,#010h

re t

It may be more useful in some applications to treat these memory
locations as register banks, as they are described in the Microchip
literature. According to this model, bit 4 of the fsr enables bank selection
when it is a 1. The 16-byte bank in use is then selected by bits 5 and 6
of the fsr as shown in figure 2.

This model explains the warps in the memory map. Each of the three
warp addresses (20h, 40h, and 60h) has a 0 in the bit-4 position. This
disables banked memory, causing the PIC to disregard all but bits 0
through 3 of the address.

7: Direct & Indirect Addressing

