
PIC Application Notes

Page 88 • PIC Application Notes • TechTools

Introduction. This application note shows how to use the interrupt
capabilities built into the PIC 16Cxx series controllers with a simple
example in TechTools assembly language.

Background. Many controller applications work like a fire department.
When there’s no fire, they mend hoses, polish the fire truck, and wait for
something to happen. When the fire bell rings, they swing into action and
handle the emergency. When it’s over, they return to waiting.

If there were no fire bell, the job would be much different. The fire crew
would have to go out and look for fires, and somehow still make sure that
the hoses were fixed and the truck maintained. In their scurry to get
everything done, they might respond late to some fires, and miss others
completely.

The newer PIC 16Cxx controllers have interrupts, which work like the fire
bell in the first example. When an interrupt occurs, the PIC stops what
it’s doing and handles the cause of the interrupt. When it’s done, the PIC
returns to the point in the program at which it was interrupted.

The second example, with no fire bell, is an example of polling. This is
the approach used with the 16C5x PICs, which lack interrupts. For a fast
PIC, polling isn’t nearly as bad as in the example. The PIC can often get
everything done with plenty of time to spare. But there are times when
interrupts are the simplest way to do two or more things at once.

How interrupts work. For the examples here, we’re going to talk about
the 16C84. The same principles apply to the other interrupt-capable
PICs, but registers and interrupt sources may vary.

First of all, the 16Cxx PICs awaken from power-up with all interrupts
disabled. If you don’t want to use interrupts, don’t enable them. It’s that
simple.

The PIC 16C84 can respond to interrupts from four sources:

• A rising or falling edge (your choice) on pin RB0/INT.
• Changing inputs to pins RB4 through RB7.

15: Using Interrupts

Using Interrupts

PIC Application Notes

TechTools • PIC Application Notes • Page 89

APPS

• Timer (RTCC) overflow from 0FFh to 0.
• Completion of the data EEPROM programming cycle.

You can enable any combination of these sources. If you enable more
than one, it will be up to your code to determine which interrupt occurred
and respond appropriately. More on that later.

Let’s take a simple example. We want to use the RTCC interrupt to
generate a steady 1-kHz square wave on pin ra.1. Every 500 µs the
RTCC will interrupt whatever the PIC is currently doing, toggle ra.1,
reload the RTCC with an appropriate value and return.

The first consideration is where to put the interrupt-handler code. When
the 16C84 responds to an interrupt, it jumps to location 04h in program
memory. So we’ll use an ��� statement to place the handler at 04h. If you
look at the program listing, you’ll see that we actually have two ���s: the
first positions the code �����	
�	 at 0, which is where the ’84 looks for its
power-on startup code, and the second positions the interrupt handler at
4.

The program’s startup code configures the RTCC for its initial 500-µs
timing period, and enables the interrupt. To do so, it turns on the first two
bit switches shown in figure 1. For any interrupt to occur, the global-
interrupt enable (GIE) bit must be set. For the timer interrupt to occur, the
RTCC interrupt enable
(RTIE) bit must be set.
Once those two
switches are closed,
only one switch re-
mains before the inter-
rupt “alarm bell” goes
off—the RTCC inter-
rupt flag (RTIF).

When the interrupt oc-
curs, the PIC clears GIE
to disable further inter-
rupts, pushes the pro-
gram counter onto

Global
Interrupt
Enable
(GIE)

Timer
Interrupt
Enable
(RTIE)

Timer
Interrupt

Flag
(RTIF)

INTERRUPT

Figure 1. Logic of the interrupt-enable
and flag bits for the RTCC.

15: Using Interrupts

PIC Application Notes

Page 90 • PIC Application Notes • TechTools

the stack, then jumps to location 4. This process takes four instruction
cycles for an internal interrupt like the RTCC, five for an external interrupt
like RB0/INT.

Once at location 4, the PIC executes the code there until it encounters
a ��	, ��	�, or ��	 instruction. Any of these will pop the value from the top
of the stack and cause a jump back to the point at which the program was
interrupted. However, the normal way to return from an interrupt is the
��	 instruction. It automatically re-enables interrupts by setting GIE. The
other two returns do not.

In the program listing, you will notice that the first thing the interrupt
handler does is clear RTIF. Whenever the RTCC rolls over from 0FFh to
0, the PIC automatically sets RTIF. It does this regardless of the state of
the interrupt bits. And it never turns RTIF back off. So it’s the responsi-
bility of the interrupt handler to clear RTIF. This is true of all of the interrupt
flags. If the handler doesn’t clear the appropriate flag, the same interrupt
will occur again as soon as interrupts are re-enabled. The resulting
endless loop is what the Microchip documentation calls “recursive
interrupts.”

With a single interrupt source, you can think of an interrupt as a hardware
version of the �
�� instruction. The primary difference is that this kind of
�
�� can occur anywhere in your program, whether or not the program is
ready for it. This can pose a problem. Let’s say your program is executing
the TechTools instruction
����������	
 when the interrupt occurs. That

�� instruction actually consists of two instructions; one that loads the
variable ���	
 into the � register, and a second that adds � to ���.

Imagine that right after ���	
 is loaded into �, the interrupt takes over. It
performs, for instance, the instruction ��������
	
. This instruction loads
the variable data into �, then moves � into ��. When it’s done, � contains
a copy of �
	
.

When the handler returns, the PIC completes the interrupted addition.
But � contains �
	
, not the intended ���	
, causing an error.

There are two ways to prevent this. One is to disable interrupts before

15: Using Interrupts

PIC Application Notes

TechTools • PIC Application Notes • Page 91

APPS

a two-part instruction, then enable them again afterwards. If the interrupt
event occurs while interrupts are disabled, the PIC will set the interrupt
flag, but won’t jump to the handler until your program re-enables
interrupts. The PIC will not miss the interrupt, it will just be slightly
delayed in handling it. To use this method, the example above would be
changed to:

c l rb G I E ; Interrupts disabled.
a d d sum,del ta ; w = delta: sum = sum+w.
se tb G I E ; Interrupts enabled.

The alternative approach is to begin your interrupt handler with code that
saves a copy of the � register. Then, just before ��	, move the copy back
into �.

This takes care of compound instructions that use �, but leaves another
group of instructions vulnerable; the ones that use the status register.
Conditional jumps and skips like jump-if-zero (��) and compare-and-
jump-if-equal (���) and their many cousins are probably obvious. More
subtle are the rotate instructions �� and �� (which pull the carry bit into the
most- or least-significant bit of the byte being rotated). If the interrupt
handler affects any of the status bits, it may alter the outcome of the
interrupted instruction.

To protect � and �	
	��, you must make copies of them at the beginning
of a handler, then restore those copies at the end. In order to prevent the
action of restoring � from affecting �	
	��, you can use a sneaky trick.
Moving a file register into � will set or clear the zero bit, but moving a
nibble-swapped copy of the register into � does not. Neither does
swapping the nibbles of a file register. The program listing shows how to
use these loopholes to accurately copy both � and �	
	��.

Keep your interrupt handlers as short and simple as possible. Examine
them carefully for their effect on other portions of the program that might
be executing at the time the interrupt occurs. If necessary, protect
sensitive code by bracketing it with instructions that temporarily disable
interrupts. Also, keep in mind that test running your program may not
catch all possible interrupt-induced bugs. Use the PSIM simulator and a
sharp eye to detect potential problems.

15: Using Interrupts

PIC Application Notes

Page 92 • PIC Application Notes • TechTools

Once you understand how the mechanism works with a single interrupt
source, you’ll be relieved to know that it’s not that much more difficult to
handle multiple interrupt sources. Figure 2 shows the alarm-bell diagram
for multiple interrupts on the 16C84. If you have all of the 16C84’s
interrupts enabled, your handler at 04h should begin with something like:

j b INTF, rb0_edge ; If INTF then handle rb.0 interrupt.
j b RBIF, rb_change ; If RBIF then handle change on rb.4-7.
j b RTIF, timeout ; If RTIF, then handle timer rollover
j b EEIF, EE_wr_done ; If EEIF, then handle write complete.

Code at each of those labeled locations (��������, etc.) would then deal
with that particular type of interrupt. Remember that each of the handlers
must clear its correspond-
ing flag; for example,
�������� must include
the instruction ���������.

What happens if an inter-
rupt occurs while the PIC
is already handling an in-
terrupt? At that time, noth-
ing. Remember that the
PIC clears GIE automati-
cally in response to an
interrupt, then sets it when
�	 executes. Any interrupt
event that occurs in the
meantime will set the ap-
propriate flag. That inter-
rupt will be delayed until
after the current one is
finished.

Program design. Inter-
rupts are not a cure-all for
the difficulties of handling multiple tasks. In fact, you may just end up
trading a difficult

GIE

INTERRUPT

INTE

RBIE

RTIE

EEIE

INTF

RBIF

RTIF

EEIF

INTE/F = RB0 interrupt enable/flag bits
RBIE/F = RB4Ð7 change interrupt enable/flag bits
RTIE/F = RTCC overflow interrupt enable/flag bits
EEIE/F = EEPROM write complete interrupt enable/flag bits

Figure 2. Logic of all four 16C84
interrupts.

15: Using Interrupts

PIC Application Notes

TechTools • PIC Application Notes • Page 93

APPS

 programming job for an even more difficult debugging job. Experts
suggest using interrupts only as a last resort.

�������
��������� !�"�(Interrupt demonstration)
; This program illustrates the use of the RTCC interrupt
; in the PIC 16C84. The foreground program blinks an LED on
; pin ra.0, while an interrupt task outputs a 1-kHz square
; wave through pin ra.1 (assuming a 4-MHz clock).

; Device (16c84) and setup options.
device pic16c84,xt_osc,wdt_off,pwrt_off,protect_off

; Equates for LED, tone pins. Connect the LED through a
; 220-ohm resistor. Connect a speaker or earphone through
; a 1-k resistor.
LED = ra.0
SPKR = ra.1
tone = 6 ; Load into RTCC for 500-us delay.

; Allocate space for some variables. Notice that in the ’84
; variable start at 0Ch—higher than in the 16C5x series.

org 0Ch
w_copy ds 1
s_copy ds 1
countL ds 1
countH ds 1

; On startup, the PIC looks at address 0 for its first
; instruction. Since the interrupt handler begins at
; address 4, we’ll just jump over it to get to the
; startup routine.

org 0
jmp start ; Beginning of main program.

; Next is the interrupt handler, which must begin at
; address 4. This handler copies restores w and the status
; register. Because a normal “mov w,fr” alters the z bit of
; the status register, this routine uses “mov w,<>fr,” which
; does not. The routine actually swaps the byte twice,
; resulting in the correct value being written to w without
; affecting the z bit.

org 4
handler

clrb RTIF ; Clear the timer interrupt flag.
mov w_copy,w ; Make a copy of w.
mov s_copy,status ; Make a copy of status.

15: Using Interrupts

PIC Application Notes

Page 94 • PIC Application Notes • TechTools

XOR ra,#2 ; Toggle bit ra.1.
mov rtcc,#tone ; Reload rtcc for 500-us delay.
mov status,s_copy ; Restore status register
swap w_copy ; Prepare for swapped move.
mov w,<>w_copy ; Swap/move to w, status unaffected.
reti ; Return to main program.

; Here’s the startup routine and the main program loop.
; In the line that initializes “intcon,” bit 7 is GIE and bit 5
; is RTIE. Writing 1s to these enables interrupts generally (GIE)
; and the RTCC interrupt specifically (RTIE).

Start
mov !ra,#0 ; Make ra pins outputs.
setb rp0 ; Switch to register page 1.
clr wdt ; Assign prescaler to rtcc.
mov option,#0 ; Set prescaler to divide by 2.
clrb rp0 ; Restore to register page 1.
mov intcon, #10100000b ; Set up RTCC interrupt.

; If the interrupt handler were to alter w, the LED would stop
; flashing or flash erratically, since the routine is written to
; rely on the value of w remaining 1 in order to toggle bit ra.0.
; The routine also relies on reliable operation of the status
; register because of the two skip-if-not-zero (snz) instructions.
; Although this structure is a little strange, it’s an effective
; canary-in-a-coalmine demonstration that the interrupt handler’s
; save/restore instructions do preserve both w and status.

mov w,#1 ; Bit in 0 position to toggle ra.0.
:loop inc countL ; countL=countL + 1

snz ; IF countL=0,
inc countH ; THEN countH=countH+1
snz ; IF countH=0,
XOR ra,w ; THEN toggle LED.
jmp :loop

15: Using Interrupts

