
Page 1 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Introduction

Thank you for purchasing Parallax PIC development tools. We’ve done
our best to ensure that our tools are easy-to-use and complete.

As of January, 1995, we offer six products for PIC development:

• PIC16Cxx Assembler
• PIC16Cxx Software Simulator
• PIC16Cxx Programmer
• ClearView ’5x In-Circuit Emulator
• ClearView ’xx In-Circuit Emulator
• BackDraft ’17 Programmer

The PIC16Cxx Assembler is used to convert assembly language source
code into object code, which is then used by the simulators, programmers,
and emulators. Our assembler accepts programs written using our
8051-like instruction set, as well as the original Microchip instruction
set. If you plan to use source code in the Microchip format, please note
that while our assembler will accept their instructions, it will not accept
their syntax. For instance, the Microchip assembler expects a binary
number to be written as b‘00100111’; our assembler expects the same
number to be written in the Intel format, as 00100111b. If you plan to
write code using Microchip instructions, you can certainly do so, as
long as the syntax is in the Intel format. However, if you plan to use
Microchip code samples verbatim, you will need to change the syntax
of the code. Or, you may want to use Microchip’s assembler.

The PIC16Cxx Simulator is a piece of software that simulates the
execution of PIC programs on the PC’s screen. Execution can be single-
stepped, breakpoints can be set, and registers can be watched. Many
customers find the simulator useful for preliminary testing and
debugging. And for hardware testing, the simulator can be used with
our I/O simulator and in-circuit emulator products. In both cases, the
simulator can exercise a real circuit designed to accept a PIC chip.

The PIC16Cxx Programmer allows you to program, read, and verify
PICs. The programmer’s single-screen software makes programming a
snap. And inexpensive upgrades and adapters keep the programmer
current. As of January, 1995, the programmer supports the PIC16C5x,
16C64 (with adapter), 16C71, 16C74 (with adapter), and 16C84. Optional
adapters are available with ZIF, SOIC, and SSOP sockets.

Page 2 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Introduction

The programmer is available in two configurations:

Complete Package With cables, power supply, and printed
documentation.

Hobbyist Pack With user-supplied cables and power
supply, and documentation on disk.

Please see page 69 for cable information
(see page 65 in the PDF version).

ClearView ’5x and ClearView ’xx are in-circuit emulators. They plug
in place of a PIC in a target circuit, and allow you to run your code in-
circuit at full hardware speeds (32 kHz - 20 MHz). They also support full
debugging features, such as stepping, breakpoints, and register
modification. The main difference between the two units is in which
PICs they support: the ’5x unit only supports the 16C5x parts, and the
’xx unit only supports the newer 16Cxx parts (16C64, 16C71, 16C84,...).
These emulators provide the most comprehensive help to test and
debug code in-circuit.

BackDraft ’17 is our first product for the PIC17C42. It allows you to
program, read, and verify 17C42s. The unit has a 40-pin ZIF socket for
DIP parts, and an optional adapter is available for PLCC parts. For an
assembler, we provide Microchip’s assembler and documentation.

Page 3 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Important Information

Warranty

Parallax warrants its products against defects in materials and workmanship for a period
of 90 days.

If you discover a defect, Parallax will, at its option, repair, replace, or refund the purchase
price. Simply return the product with a description of the problem and a copy of your
invoice (if you do not have your invoice, please include you name and telephone
number). We will return your product, or its replacement, using the same shipping
method used to ship the product to Parallax (for instance, if you ship your product via
overnight express, we will do the same).

This warranty does not apply if the product has been modified or damaged by accident,
abuse, or misuse.

14-Day Money-Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your
needs, you may return it for a refund. Parallax will refund the purchase price of the
product, excluding shipping/handling costs. If the product has been altered or damaged,
a partial refund will be given.

Copyrights and Trademarks

Copyright © 1994 by Parallax, Inc. All rights reserved. Parallax and all variations of the
Parallax logo are trademarks of Parallax, Inc. PIC is a registered trademark of Microchip
Technology, Inc. Other brand and product names are trademarks or registered trade-
marks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting
from any breach of warranty, or under any legal theory, including lost profits, downtime,
goodwill, damage to or replacement of equipment or property, and any costs or recover-
ing, reprogramming, or reproducing any data stored in or used with Parallax products.

Parallax BBS and Internet Access

Parallax has a 24-hour BBS for your convenience. Customers call our BBS to obtain the
latest versions of Parallax software or to try software before purchasing the complete
product. In addition, some customers use the BBS as a forum to communicate their ideas
with other customers.

The BBS telephone number is (916) 624-7101.
Settings are: 300-14400 baud, 8 data bits, 1 stop bit, no parity.

You can now access Parallax via Internet. Many BBS files are available on our ftp site, and
you can send email to our sales and technical staff. The Internet address is parallaxinc.com.

Page 4 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Important Information

Using Parallax PIC Tools with Non-Parallax Tools

If you want to use Parallax development tools with tools from other
companies (such as using our assembler with one of Microchip’s
programmers), please be aware that you may experience some difficul-
ties. These difficulties are usually the result of incompatible file formats.

Some of our customers have gone so far as to write custom software to
make various tools work together. However, this much effort is usually
not required. If you’ll be mixing brands, just keep the following notes
in mind:

1) Our assemblers produce files in Microchip’s Intel Hex 8-bit
Merged format (referred to as “INHX8M”). If you’re using a
simulator, programmer, or emulator from another company,
find out if it supports this format.

2) Many of our hardware tools expect hex files in the above
mentioned “INHX8M” format. If you’re using an assembler
from another company, find out if it supports this format. The
Microchip assembler supports this format, but does not default to it.

3) Our products produce and expect certain device data in hex files
(device data indicates which PIC is being used, which oscillator,
etc.). Development tools from other companies may simply
ignore this data, in which case you will need to restate the
settings. Some tools, however, may refuse to load files with extra
data.

Microchip’s PICSTART-16B programmer is one of the more
notable development tools that doesn’t accept files with our
device data.

In such cases, the Parallax assemblers can be instructed to leave
out the device data.

4) When using Microchip’s MPASM assembler or Byte Craft’s C
compiler with our simulator, you need to use a “.cod” file,
instead of the usual “.lst” file used with our assemblers.

Page 9 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

This section contains two example projects that use the PIC16C54.
Schematics and commented source code are given. It’s assumed that
you’re familiar with digital circuits and assembly language
programming. And, although the source code for these projects is
included on your PIC diskette, you may want to type in the programs.
The programs are very short and typing them will give you a better feel
for the PIC.

You may wish to read the PIC16Cxx assembler and programmer
chapters before continuing. However, these examples have been written
to work with no knowledge of those chapters. So, if you really want to
try a simple PIC project right away, you shouldn’t have any problems.

Each project uses a PIC16C54-RC/P, which is the least expensive one-
time-programmable PIC. Since you might make mistakes, you should
have a small supply of PIC’s (five or ten, perhaps). Or, if you’d rather
deal with just one part, the PIC16C54/JW (erasable) will do the job.

Aside from the above, the examples assume two more things: 1) that
you have a text editor capable of saving ASCII files, and 2) that you are
in the disk/directory which contains the PIC16C5x software from
Parallax.

The first project is a variation on the perennial button-and-LED circuit;
the PIC flashes an LED at one speed and then, if the button is pressed,
speeds up the flashing. This project is useful as a very basic introduction
to the PIC (and microcontrollers in general).

The second project is only slightly more complicated; it incorporates a
7-segment display, which increments whenever the button is pressed.
In addition to the basics, this project shows how to debounce a button
and how to make a lookup table on the PIC.

For a broader selection of PIC applications, please refer to the PIC16Cxx
Applications Handbook. It contains a collection of application notes on
various topics, such as interfacing to LCD displays, reading keypads,
sending serial data, and controlling servos.

Page 10 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 11 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #1: “Simple”

As mentioned at the beginning of this chapter, this project gives you a
very simple introduction to the PIC. The PIC flashes an LED at one
speed and then, if the button is pressed, speeds up the flashing.

The PIC itself requires only two parts to operate: a resistor and capacitor
to form its RC oscillator. The remaining four parts are the button, the
LED, and their resistors.

Before continuing, build the circuit shown below. Only seven parts are
necessary, so the task shouldn’t be too laborious. If you don’t have
exactly what’s called for, you can substitute a close match (the 4.7K
resistor and 20 pF capacitor should not be substituted with smaller
values, however).

Page 12 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #1: “Simple” (continued)

The following listing is the source code for the project:

; PIC EXAMPLE PROGRAM: “SIMPLE”
; June 8, 1992
;
; This 16-word program is a very simple PIC application. Its only purpose
; is to flash an LED at one of two rates. Normally, the LED flashes slowly.
; However, if bit 0 of port A (RA0) is grounded, the LED flashes roughly twice
; as fast.
;
; As the program is written, it expects to run on a PIC16C54-RC/P. A push
; button connects RA0 to ground (don’t forget a pull-up resistor from RA0 to
; Vdd, perhaps 10K). A current-limited LED is connected from RA1 to ground
; (330 ohms work well). For an oscillator, a 20 pF capacitor to ground and
; a 4.7K resistor to Vcc are connected to OSC1 (OSC2 is left open). RTCC and
; MCLR should be tied high. Lastly, power and ground are connected to Vdd
; and Vss, respectively.
;
; If you’re looking for a simple introduction to the PIC, this program should
; help. Among other things, it shows the following basic concepts:
;
; * Setting device options
; * Setting the reset vector
; * Setting I/O pins as inputs or outputs
; * Using global labels
; * Using local labels (see “:Loop” below)
;
; If you build the circuit described above using a PIC programmed with the
; following program, the LED should start flashing as soon as you apply power.

; START OF PROGRAM

; Set the device type, oscillator type, watchdog timer status, and code
; protect status

DEVICE PIC16C54,RC_OSC,WDT_OFF,PROTECT_OFF

RESET Start ;Set reset vector to address at Start
;(PIC will jump to this when reset)

Count0 equ 10h ;Assign labels to registers 10h & 11h
Count1 equ 11h

clr Count0
clr Count1
clr RA ;Clear port before setting direction register

Start mov !RA,#00000001b ;Set data direction register for port A
;(make bit 0 an input)

;
; Loop 65536 times, then invert the LED
;

:Loop djnz Count0,:Loop ;Decrement Count0 until it reaches zero
djnz Count1,:Loop ;Decrement Count1. If it’s not zero,

;jump back to :Loop

xor RA,#00000010b ;Invert the LED (bit 1 of port A)

;
; Check button status. If it’s pressed, skip the additional delay and jump
; back to the first loop
;

Page 13 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #1: “Simple” (continued)

ChkBtn jnb RA.0,Start:Loop ;Jump to 1st loop if button is pressed
;(button is low when pressed)

:Loop djnz Count0,:Loop ;Decrement Count0 until it reaches zero
djnz Count1,:Loop ;Decrement Count1. If it’s not zero,

;jump back to :Loop

jmp Start:Loop ;Jump back to first loop

Once you’ve typed in the program, save it as SIMPLE.SRC and exit
your text editor. The next step is to assemble the source code into object
code, which is then used by the programmer.

To assemble the program, type the following command from the DOS
prompt:

PASM SIMPLE (the extension is only necessary if it’s not
“.SRC”)

If the assembler finds any errors, it will give you the line number and
description of each error. Before continuing, you’ll need to correct any
errors and re-assemble the program.

If the program assembles correctly, the assembler will produce an
object file, called SIMPLE.OBJ.

To start the PIC16Cxx Programmer software, type this command from
the DOS prompt:

PEP SIMPLE (here, the extension is only necessary is it’s not
“.OBJ”)

After a second or two, you’ll see the screen shown on the next page.

Page 14 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #1: “Simple” (continued)

 DEVICE: 54 55 56 57 58 PIC16C5x-PGM/EMU
 OSCILLATOR: RC HS XT LP (C)1994 Parallax
 WATCHDOG: ON OFF
 CODE PROTECT: OFF ON ID: FFFF CHECKSUM

 000- FFF FFF FFF FFF FFF FFF FFF FFF
 008- FFF FFF FFF FFF FFF FFF FFF FFF
 010- FFF FFF FFF FFF FFF FFF FFF FFF
 018- FFF FFF FFF FFF FFF FFF FFF FFF
 020- FFF FFF FFF FFF FFF FFF FFF FFF
 028- FFF FFF FFF FFF FFF FFF FFF FFF
 030- FFF FFF FFF FFF FFF FFF FFF FFF
 038- FFF FFF FFF FFF FFF FFF FFF FFF

 HEX ENTRY ASCII ENTRY FILL (↵)

 PROGRAM EMULATE ESC EXIT
 VERIFY
 READ LOAD: SIMPLE.OBJ
 BLANK CHECK SAVE:

The screen should appear exactly as above, except that your object code
should fill the center of the screen (in place of the FFFs).

If everything checks out, then it’s time to program a PIC. To do so,
follow these steps:

1) Make sure that your PIC Programmer is properly connected to
your PC (see the Programmer chapter, if you have any doubts).

2) Place an erased PIC16C54-RC/P into the programmer’s 18-pin
LIF socket.

3) Press ’B’ (blank check) on your keyboard. The screen will display
a message indicating whether or not the PIC is blank. If the PIC
is not blank, try another one.

Page 15 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #1: “Simple” (continued)

4) Once you have a blank PIC in the programmer, press ’P’ (pro-
gram). Programming and verification should take a second or
two. Then, a message will be displayed, indicating the results of
the verification.

If, for some reason, the PIC did not program and verify, try
another PIC before continuing.

Now you’re ready to try the programmed PIC in your circuit. Make sure
the power to your circuit is off, and then plug in the PIC.

When you turn the power on, the LED should be flashing. If you push
the button, the LED should blink faster.

If your project appears totally “dead”, then something is very wrong.
Double-check the circuit (power, RC oscillator, etc.) and source code. If
it appears to work, but not quite right, then the problem is probably a
software bug.

Hopefully, this project worked out smoothly. Although a very simple
project, it shows a number of basic concepts. If you’re not yet comfort-
able with the PIC, read the source code carefully. The comments will
help you understand each instruction.

Page 16 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 17 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #2: “Table”

Like the first project, this project gives you a simple introduction to the
PIC. But, it also demonstrates the useful topics of how to debounce push
button inputs and how to make a lookup table.

The schematic below shows the circuit. Whenever the button is pressed,
the 7-segment display increments.

The PIC itself requires only two parts to operate: a resistor and capacitor
to form its RC oscillator. The remaining four parts are the button, the 7-
segment display (common cathode), a 10K resistor, and a resistor pack
(330-ohm, 8 isolated resistors).

Page 18 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #2: “Table” (continued)

The following listing is the source code for the project:

; PIC EXAMPLE PROJECT: “TABLE”
; August 19, 1992
;
; This 44-word program is a simple PIC application that shows some useful
; routines. Its purpose is to monitor a button and display a digit on a
; 7-segment display. When the button is pressed, the digit increments.
;
; As the program is written, it expects to run on a PIC16C54-RC/P. A push
; button connects RA0 to ground (don’t forget a pull-up resistor from RA0 to
; Vcc, perhaps 10K). A 7-segment display (common cathode) is connected to
; port B (segment A to bit 0, segment B to bit 1, etc.). For an oscillator,
; a 20 pF capacitor to ground and a 4.7K resistor to Vcc are connected to
; OSC1 (OSC2 is left open). RTCC and MCLR should be tied high. Lastly,
; power and ground are connected to Vdd and Vss, respectively.
;
; Among other things, this program shows the following basic concepts:
;
; * Setting device options
; * Setting the reset vector
; * Setting I/O pins as inputs or outputs
; * Using labels
; * Debouncing a push button input
; * Reading from a lookup table
;
; If you build the circuit described above using a PIC programmed with the
; following program, the display should show a “0” when you apply power.

; START OF PROGRAM

; Set the device type, oscillator type, watchdog timer status, and code
; protect status

DEVICE PIC16C54,RC_OSC,WDT_OFF,PROTECT_OFF

RESET Start ;Set reset vector to address at Start
;(PIC will jump to this when reset)

Count0 equ 10h ;Register labels
Count1 equ 11h
Number equ 12h

Flag equ 13h.0 ;Bit label (bit 0 of register 13h)

Button equ RA.0 ;Port labels (bit 0 of port A)
Display equ RB ;(entire port)

Start clr Number
clr Flag
clr RA
clr RB

mov !RA,#00000001b ;Set data direction register for port A
;(make bit 0 an input)

mov !RB,#00000000b ;Set data direction register for port B
;(make all bits outputs)

; Main loop

Digit mov W,Number ;Move Number into W

Page 19 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #2: “Table” (continued)

call GetPattern ;Get bit pattern for digit
mov Display,W ;Show digit

jnb Flag,UpLoop ;If flag is clear, check for 2048 reads
;of button not pressed

jb Button,Digit ;Jump if flag set, but button not
;pressed

; If button pressed after not being pressed for 2048 reads, then increment number

inc Number ;Increment number
cjne Number,#10,Clear

clr Number ;If Number reached 10, reset to 0

Clear clr Flag
jmp Digit

; Set flag if button not pressed for 2048 reads. Faster oscillator speeds
; may require more than 2048 reads to properly debounce button inputs.

UpLoop clr Count0
mov Count1,#08

Loop jnb Button,Digit ;If button pressed before 2048 reads,
djnz Count0,Loop ;jump back to main loop
djnz Count1,Loop

setb Flag ;Set flag if button not pressed
jmp Digit

; 7-segment lookup table

GetPattern jmp PC+W ;Jump to appropriate bit pattern,
;load W with pattern, and then return
;to calling routine.

retw 3Fh,06h,5Bh ;Bit patterns for digits 0-9
retw 4Fh,66h,6Dh
retw 7Dh,07h,7Fh
retw 6Fh

; retw ’This is text’ ;Sample text lookup table (not used by program)

Once you’ve typed in the program, save it as TABLE.SRC and exit your
text editor. The next step is to assemble the source code into object code,
which is then used by the programmer.

To assemble the program, type the following command from the DOS
prompt:

PASM TABLE (the extension is only necessary if it’s not
“.SRC”)

Page 20 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C54 Examples

PIC Project #2: “Table” (continued)

If the assembler finds any errors, it will give you the line number and
description of each error. Before continuing, you’ll need to correct any
errors and re-assemble the program.

If the program assembles correctly, the assembler will produce an
object file, called TABLE.OBJ.

To start the PIC16Cxx Programmer software, type this command from
the DOS prompt:

PEP TABLE (here, the extension is only necessary is it’s not
“.OBJ”)

After a second or two, you’ll see the screen shown below:

 DEVICE: 54 55 56 57 58 PIC16C5x-PGM/EMU
 OSCILLATOR: RC HS XT LP (C)1994 Parallax
 WATCHDOG: ON OFF
 CODE PROTECT: OFF ON ID: FFFF CHECKSUM

 000- FFF FFF FFF FFF FFF FFF FFF FFF
 008- FFF FFF FFF FFF FFF FFF FFF FFF
 010- FFF FFF FFF FFF FFF FFF FFF FFF
 018- FFF FFF FFF FFF FFF FFF FFF FFF
 020- FFF FFF FFF FFF FFF FFF FFF FFF
 028- FFF FFF FFF FFF FFF FFF FFF FFF
 030- FFF FFF FFF FFF FFF FFF FFF FFF
 038- FFF FFF FFF FFF FFF FFF FFF FFF

 HEX ENTRY ASCII ENTRY FILL (↵)

 PROGRAM EMULATE ESC EXIT
 VERIFY
 READ LOAD: TABLE.OBJ
 BLANK CHECK SAVE:

Page 21 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C5x EXAMPLES

PIC Project #2: “Table” (continued)

The screen should appear exactly as on the previous page, except that
your object code should fill the center of the screen (in place of the
FFF’s).

If everything checks out, then it’s time to program a PIC. To do so,
follow these steps:

1) Make sure that your PIC Programmer is properly connected to
your PC (see the Programmer chapter, if you have any doubts).

2) Place an erased PIC16C54-RC/P into the programmer’s 18-pin
LIF socket.

3) Press ’B’ (blank check) on your keyboard. The screen will display
a message indicating whether or not the PIC is blank. If the PIC
is not blank, try another one.

4) Once you have a blank PIC in the programmer, press ’P’ (pro-
gram). Programming and verification should take a second or
two. Then, a message will be displayed, indicating the results of
the verification.

If, for some reason, the PIC did not program and verify, try
another PIC before continuing.

Now you’re ready to try the programmed PIC in your circuit. Make sure
the power to your circuit is off, then plug in the PIC.

When you turn the power on, the display should show “0”. If you push
the button, the display should increment.

If your project appears totally “dead”, then something is very wrong.
Double-check the circuit (power, RC oscillator, etc.) and source code. If
it appears to work, but not quite right, then the problem is probably a
software bug.

Hopefully, this project worked out smoothly. If you’re not yet comfort-
able with the PIC, read the source code carefully.

Page 22 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 23 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

When you write programs for PIC microcontrollers, you’ll use a text
editor to create source code. Source code is the format that you’re
accustomed to looking at; it contains English-like labels, instructions,
and data.

Before your source code can be used by a programmer, downloader, or
other development tool, it must be converted into object code. Object
code is the “machine-readable” version of source code; it contains
instructions and data in the form of hexadecimal data, which can be
executed by the PIC.

An assembler is a piece of software that converts source code into object
code. For instance, this line of source code:

CALL SENDBYTE ;Call send routine

assembles into just two bytes of PIC object code:

2420h

It’s possible to write programs directly in object code, using the indi-
vidual machine codes that make up each instruction. However, most
people find it preferable to use an assembler.

To support the family of PIC16Cxx chips, we provide two assemblers.
The first assembler, PASM, assembles programs for PIC16C5x chips.
And the second assembler, PASMX, assembles programs for the newer
chips (16C64, ’71, ’84,...).

Page 24 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 25 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Assembler Basics

The purpose of both assemblers is to convert assembly language source
code into object code.

The assembler accomplishes its task in two passes:

Pass 0 - The source code is scanned in an attempt to resolve all
symbols. This is possible if all origin, define space, and equate
directives can be resolved (equated symbols may be refer-
enced by origin or define space). All other symbols can be
resolved by byte-offsets which are determined by the
mnemonic/operand combinations. If Pass 0 is successful, the
assembler will advance to Pass 1. If Pass 0 is unsuccessful, a
list of errors will be shown and assembly will be aborted.

Pass 1 - The source code is scanned once more in order to assemble
the object code. Since all symbols were resolved in Pass 0, all
instructions and miscellaneous directives can be fully re-
solved in Pass 1. If Pass 1 is successful, an object file contain-
ing the assembled code will be created. If Pass 1 is not
successful, a list of errors will be shown and assembly will be
aborted.

In addition to an object file, the assembler can be used to generate an
assembly listing. An assembly listing shows line numbers, equated
values, addresses, data, and original source code (for more information,
see the section Generating Assembly Listings later in this chapter).

Addressing Definitions

Throughout your programs, you’ll refer to bits and bytes by their
address. Depending upon the instruction being used and the item being
referred to, the address will be given in one of the following forms:

addr9 A 9-bit address (within the current 512-word page).

addr11 An 11-bit address (anywhere in program memory).

bit An address for bitwise operations
Example: PortC.3 = bit 3 of port C

Page 26 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

fr A file register (RAM) address.

rel A relative address ranging from -7Fh to +80h.

literal An immediate 8-bit value.

Data Types

Eight data types are allowed in the assembler. These data types are:

Symbol/label Binary value
Local symbol/label ASCII value
Decimal value Assembly address (origin)
Hex value EEPROM address (origin)

The examples below demonstrate various data types:

100 Decimal value 100

18h Hex value 18

0A7h Hex value A7 (hex values with A-F as the first digit must
have a leading zero)

1011b Binary value 1011

‘A’ ASCII value for the letter A (65 decimal)

Start Label Start

:loop Local label :loop

$ Current assembly address

% Current EEPROM address

In addition to single-character text, entire strings can be generated
using the RETW instruction:

retw ‘The fox jumped over the lazy dog’

Page 27 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Expressions

Mathematical expressions are used in many instructions. These
expressions may be created using the following operators:

& Logical AND / Divide

| Logical OR << Shift left

^ Exclusive OR >> Shift right

+ Add < High byte

- Subtract > Low byte

* Multiply . Bit address

Some example expressions:

setb PortA.0 Set bit 0 on port A.

mov Count+3,#88h Store 88h in location Count+3.

ds N*2 Define empty space of Nx2 bytes.

All expressions are resolved strictly from left to right. Please make
note of this, since it may affect the result of expressions. For instance, the
expression 5+2*4 would normally be resolved as (2*4)+5, for a result of
13. Since our assemblers resolve expressions strictly from left to right,
however, the example would be resolved as (5+2)*4, for a result of 28.

Symbols & Labels

Symbols are used to name locations and values within your program.
Many people refer to address symbols as “labels”, but both have the
same effect. For instance, by assigning a symbol to the start of an
important routine, you can later call that routine by its name, rather
than its address. And by giving a symbol to a common value, you can
refer to it by its name. Rather than typing “3.1415” many times in your
program, you can type PI = 3.1415 at the beginning of your program
and then use PI wherever you need it.

Page 28 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Symbols may be up to 32 character long. They must begin with a letter
or underscore (_) and must contain only letters, numbers, underscores,
and colons. Further, if you’re labeling an address (such as the start of a
routine), the label must start at the beginning of the line.

Here are some exmples of valid symbols:

min_count = 20h
maximum_count = 21h

begin mov min_count,#05h

Local Labels

Like normal global lables, local labels may be used to name a location
in your program. However, unlike a global label, a local label may be
used to name more than one location. This is done by separating
occurrences of the same local label with at least one global label.

Local labels have the same syntax rules as global labels, except they
must begin with a colon (:), and must be referred to with a colon. Local
labels can be referred to from beyond the global label boundary by
referring to global label name: local label name.

The following code demonstrates how to use the local label :loop for
common looping purposes. In the code below, Routine1, Routine2, and
Routine3 are global labels; :loop is a local label.

Routine1 mov count,#100
:loop call send_a

djnz count,:loop
ret

Routine2 mov count,#200
:loop call send_b

djnz count,:loop
ret

Routine3 mov count,#250
jmp Routine2:loop

Page 29 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Default Symbol Tables

When the assembler is started, its symbol table is initialized with
various PIC symbols, such as C for the Carry register, RA for Port A, etc.
This saves you from having to define every register and bit in the PIC.

Since the PIC16C5x parts are very similar to each other, the ’5x
assembler (PASM) uses a set symbol table. The assembler for newer
PICs (PASMX), however, changes its symbol table depending upon
which PIC it’s assembling for. The device directive (explained later)
tells the assembler which PIC is being used.

If you’d like to see the symbol table for a particular PIC, please refer to
the Assembler Symbol Tables at the end of this manual.

Comments

Comments can be placed anywhere in your source code, beginning at
any point on a line and continuing to the end. A semicolon initiates a
comment. The following are example comments:

;
;Move literal value 61h into w
;

Input = 10h
Output = 11h

mov Input,#61h ;Load 61h into Input
mov Output,#10h ;Load 10h into Output

call talk_host ;Call routine to
;communicate with
;host

Blank lines can be used to provide space between lines and make the
code more readable.

Page 30 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Assembler Directives

Assembler directives are instructions that direct the assembler to do
something. Directives do many things; some tell the assembler to set
aside space for variables, others tell the assembler to include additional
source files, and others establish the start address for your program.
The directives available in both PIC assemblers are given below:

= Assigns a value to a symbol (same as EQU)

EQU Assigns a value to a symbol (same as =)

ORG Sets the current origin to a new value. This is used to set
the program or register address during assembly. For
example, the directive ORG 0100h tells the assembler
to assemble all subsequent code starting at address
0100h.

DS Defines an amount of free space. No code is generated.
This is sometimes used for allocating variable space.

ID Sets the PIC’s identification.

PIC16C5x chips have two ID bytes, which can be set to
a 2-byte value or checksum. If the ID is CHECKSUM,
the programmer software will compute a checksum.

Newer PICs have four 7-bit ID locations, which can be
filled with a 4-character text string

INCLUDE Loads another source file during assembly. This
allows you to insert an additional source file in your
code during assembly. Included source files usually
contain common routines or data. By using an
INCLUDE directive at the beginning of your program,
you can avoid re-typing common information.

Included files may not contain other included files.

Page 31 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

DEVICE Establishes the device type, oscillator type, watchdog
status, and code-protect status. The following options
are used with DEVICE to define the PIC being used:

PIC16C54 Select PIC16C54
PIC16C55 Select PIC16C55
PIC16C56 Select PIC16C56
PIC16C57 Select PIC16C57
PIC16C58 Select PIC16C58
PIC16C64 Select PIC16C64
PIC16C71 Select PIC16C71
PIC16C84 Select PIC16C84

RC_OSC Use RC oscillator
XT_OSC Use XT oscillator
HS_OSC Use HS oscillator
LP_OSC Use LP oscillator

WDT_ON Turn watchdog timer on
WDT_OFF Turn watchdog timer off

PROTECT_ON Turn code-protect on
PROTECT_OFF Turn code-protect off

PWRT_ON * Turn power-up timer on
PWRT_OFF * Turn power-up timer off

* These options are not available for PIC16C5x chips.

In programs written for older PICs (PIC16C5x), the
DEVICE directive is optional. However, it must be
present at the beginning of programs written for newer
PICs (’64, ’71, ’84,...). This is because the assembler for
the newer PICs (PASMX) needs to make various
changes to its internal symbol table.

In addition to giving the assembler information, the
DEVICE directive passes useful data to other tools
down the line. For instance, the programmer software
reads this data to preset options on the screen.

PIC16Cxx Assemblers

Page 32 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

RESET Sets the reset start address. This address is where
program execution will start following a reset.

A jump to the given address is inserted at the last
location in memory. After the PIC is reset, it starts
executing code at the last location, which holds the
jump to the given address.

RESET is only available for PIC16C5x chips.

EEORG Sets the current data EEPROM origin to a new value.
This is used to set the data EEPROM address during
assembly. This directive usually precedes EEDATA.

EEORG is only available for PICs that have EEPROM
memory (currently, the ’84).

EEDATA Loads data EEPROM with given values. This provides
a means of automatically storing values in the data
EEPROM when the PIC is programmed. This is handy
for storing configuration or start-up information.

EEDATA is only available for PICs that have EEPROM
memory (currently, the ’84).

Assembler Directive Examples

The following examples demonstrate the directives given above:

DEVICE PIC16C54,RC_OSC,WDT_OFF,PROTECT_OFF
DEVICE PIC16C64,PWRT_OFF,PROTECT_ON
DEVICE PIC16C71,XT_OSC,PWRT_ON
DEVICE PIC16C84,PROTECT_ON

Digit = 43h ;Assign value 43h to Digit
Max EQU 1Ah ;Assign value 1Ah to Max

ORG 10h ;Set assembly address to 10h

Page 33 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Count DS 2 ;Define 2 bytes at 10h & 11h
;Bytes can be referred to
;later as Count and Count+1

ID 1234h ;Set PIC16C5x ID to 1234h
ID Checksum ;Set PIC16C5x ID to checksum

ID ‘AMMO‘ ;Set new PIC ID to ‘AMMO‘

INCLUDE ’KEYS.SRC’ ;Include KEYS.SRC file at
;point of insertion

RESET XXYY ;Set reset jump to location
;XXYY

XXYY mov Count,#00 ;This code will be executed
mov Count+1,#02 ;whenever the PIC is reset

EEORG 10h ;Set EEPROM address to 10h
EEDATA 02h,88h,34h ;Store 3 bytes in EEPROM

Source Code Formatting

We recommend that you format your source code with evenly spaced
tabs, preferably 8 spaces each, since this will lend consistency to
assembly listings. The assemblers are not case sensitive (except in the
instance of strings), so you may follow your own convention for using
upper and lower case.

PIC16Cxx Assemblers

Page 34 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Running the Assembler

To assemble your source code into object code, type the following
command at the DOS prompt:

PASM filename Assembles text file filename.src into
hex file filename.obj. This example
uses the PIC16C5x assembler.

PASMX filename Assembles text file filename.src into
hex file filename.obj. This example
uses the PIC16Cxx assembler.

If you’re assembling a program for any of the newer PICs (’64, ’71, ’84,
etc.), you must use PASMX. This assembler operates much like PASM,
but has slight internal differences to accomodate the newer PICs.

As shown above, only the name of the source file is given. The assembler
uses the same name for the object file, but replaces the extension with
“.obj”. If you do not specify an extension as part of the source file name,
the assembler will assume that the extension is “.src”.

As an example, to assemble a file called EXAMPLE.SRC written for
PIC16C5x devices, you would type:

PASM EXAMPLE

The assembler would produce an object file called EXAMPLE.OBJ.

Generating Assembly Listings

It’s possible to have the assembler create an assembly listing of your
program. An assembly listing is a duplicate of the source code, but with
object code information (line number, address, opcode, & data) preceding
each original line. To have the assembler create a listing file, simply add
“/L” after the filename:

PASM filename /L Assembles text file filename.src into
hex file filename.obj and creates a
listing file called filename.lst.

PIC16Cxx Assemblers

Page 35 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Command-Line Options

The PIC assemblers have several options which can be invoked when
they are run. These command-line options are shown below:

PASM filename Assembles text file filename.src into
hex file filename.obj. PASM assem-
bler is used for PIC16C5x devices.

PASMX filename Assembles text file filename.src into
hex file filename.obj. PASMX assem-
bler is used for newer PICs (’64, ’71).

PASM filename.xxx Assembles text file filename.xxx into
hex file filename.obj.

PASM filename /L Assembles text file filename.src into
hex file filename.obj and creates a
listing file called filename.lst.

PASM filename /S Assembles text file filename.src into
hex file filename.obj, but suppresses
Parallax device data normally
included in the file.

This may be useful with tools that
don’t accept files with extra data,
such as the PICSTART-16B from
Microchip.

All options are available with both PASM and PASMX.

Page 36 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Error Messages

During assembly, any errors will be brought to your attention. You may
pause an error list by typing CTRL-S. Or, press ESC or CTRL-C to abort.

The following error messages may occur during assembly. They will
always be preceded by “ERROR IN xxx:”, where xxx is the line number
where the error occurred. In the case of an include file, the line number
will be shown, with the included file’s line number in parenthesis.

Address limit of xxxxh was exceeded: Data was assembled at an
address which exceeded the limit for the given PIC.

Attempt to divide by 0: An attempt was made to divide a quantity by
zero.

Bit number must be from 0 to 7: A bit-address expression attempted
to use a bit number greater than 7.

Data was already entered at location xxxxh: An object code location
which had already been assigned data, was written to again.

Equate directive must be preceded by a symbol: An “EQU” or “=”
directive was not preceded by a necessary symbol.

Illegal mnemonic: The assembler encountered an unknown directive
or instruction.

Include files cannot be nested: An INCLUDE directive was found in
an included file.

Syntax error in operand: The operand contained an expression which
did not follow proper syntax.

Invalid filename for include file: An invalid filename was given in an
INCLUDE directive.

Line cannot exceed 256 characters: Line length exceeded the line
limit of 256 characters.

Page 37 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Assemblers

Mnemonic field cannot exceed 7 characters: More than 7 characters
were in the mnemonic (instruction) field.

Illegal mnemonic/operand combination: The operand structure did
not match the instruction’s or directive’s possibilities.

Literal value must be from 0 to 0FFh: A value which needed to be
from 0 to 255, was greater than 255.

Operand field cannot exceed 256 characters: More than 256 charac-
ters were in the operand field after expansion by the assembler.

Redefinition of symbol xxxx: An attempt was made to redefine a
symbol that was already defined.

Symbol field cannot exceed 32 characters: More than 32 characters
were in the symbol field.

(operand) symbol must contain only letters, numbers, ‘_’, and ‘:’:
A symbol contained illegal characters.

(operand) symbol is a reserved word: A symbol was identical to a
reserved word.

(operand) symbol is too long: A symbol referenced in the operand
exceeded 32 characters.

(operand) symbol must begin with a letter or ‘_’: A symbol started
with an illegal character.

Symbol table full: The symbol table’s 16K limit was exceeded.

Use of unknown symbol xxxx: A symbol was referenced in the
operand, which was never declared.

Page 38 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 39 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

The PIC simulator is a piece of software that simulates the execution of
PIC programs on the PC. Using a listing file (.lst) or code file (.cod) from
an assembler or C compiler, the simulator “runs” PIC code on the
screen. A single screen shows all of the PIC’s registers, as well as the
source code given in the input file. Execution can be single-stepped,
breakpoints can be set, and registers can be modified.

Many customers find the simulator very useful for preliminary testing
and debugging.

Although not discussed in this chapter, the simulator can also be used
with our in-circuit emulator products. In this case, the simulator can
exercise a real circuit designed to accept a PIC chip. For more informa-
tion on these, please refer to the ClearView chapters.

PIC16Cxx Simulator

Page 40 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 41 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Simulator

Running the Simulator

To run the simulator, type the following command at the DOS prompt:

PSIM filename Runs the simulator and loads
filename.lst.

The simulator uses the listing file that is optionally produced by the
Parallax assemblers. The extension “.lst” can be omitted, since it’s
assumed by default. If, however, an extension is given, it will be used.

The simulator can also be used with Microchip’s MPASM assembler
and Byte Craft’s MPC C compiler. In both cases, you must use the code
file (.cod) produced by these products (do not use .lst files).

The simulator loads the file and displays the source code in the lower
half of the screen. The PIC’s registers are displayed in the upper half of
the screen.

Scrolling Through Source Code

You can scroll through the source code displayed in the lower half of
the screen by using the up and down arrow keys, as well as PGUP,
PGDN, HOME and END. The HOME key brings you to the beginning
of the address space, while the END key brings you to the end.

Two highlighted lines are always present in the source code display.
The “current line” indicates the current line being executed, while the
“marker line” is used for special functions, such as setting breakpoints.

The current line is indicated by blue text on a grey background. The
current line moves from line to line as your program runs. Any change
to the Program Counter (PC register) will move the current line.

The marker line is indicated by yellow text on a black background. The
marker line does not move; instead, it remains in the middle of the
source code display. By scrolling the source code up and down, you can
position a particular line of code in the marker line. When a line is in the
marker line, special functions can be performed on the line, such as
setting a breakpoint.

Page 42 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Device Type

The simulator determines the device type being simulated by a variety
of methods. The recommended method is to include the DEVICE
directive in your source code. The simulator locates the directive in the
listing file and sets the device type accordingly. If the directive is not
present in the file, the simulator determines the device type by the type
of listing file and the amount of program space used by the source code.
If there are no instructions above address 1FFh hex, the PIC16C54 is
assumed. If there are instructions higher than 1FFh, but not higher than
3FFh, the PIC16C56 is assumed. If there are instructions above 3FFh,
then the PIC16C57 is assumed.

Another method of selecting the device type is to use the command-line
option “/D=”. Examples are as follows (they are all equivalent):

 PSIM filename /D=PIC16C54
 PSIM filename /D=PIC54
 PSIM filename /D=54

The final method of selecting the device type is to use the Alt-D
command from within the simulator. Pressing Alt-D will pop up a
menu where you can use the up and down arrow keys to select the
desired device. Press RETURN when the desired device is highlighted.

When loading files into the simulator, keep in mind that the PIC16C5X
and new PICs (’71, ’84,...) do not have compatible object code. If the
device type is set to PIC16C71 while simulating PIC16C5X code,
unexpexted results will occur.

Crystal Frequency

The simulator uses a simulated crystal value to calculate the instruction
cycle time. The crystal value can be entered by one of two methods. The
first method is to enter it in the command-line after the filename using
the “/X=” option. Possible suffixes are “Mhz”, “khz”, and “hz”. If no
suffix is entered, the frequency is assumed to be in hertz (cycles/
second). Some examples are as follows:

 PSIM filename /X=4Mhz

PIC16Cxx Simulator

Page 43 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

 PSIM filename /X=32.768khz
 PSIM filename /X=32768hz
 PSIM filename /X=32768

The second method of setting the crystal value is to press Alt-C from
within the simulator and then type in a new value. See the Alt-C later
in this chapter for further details. If no crystal frequency is entered, the
simulator will default to 8 Mhz upon startup.

Setting Breakpoints

As mentioned at the beginning of this chapter, the highlighted line in
the middle of the source code display is the marker line. To set a
breakpoint, scroll through the code until the desired line is highlighted
by the marker, and then press F2. The line will be highlighted in red,
which indicates a breakpoint. To clear the breakpoint, press F2 again.

There is no limit to the number of breakpoints you can set.

Modifying Registers

To modify a register during simulation, you may use one of two
methods. If your computer has a mouse, you can move the mouse
cursor until the desired register is highlighted, then press the left mouse
button to increment the register contents or the right mouse button to
decrement it. The upper and lower nibbles of a register can be
incremented or decremented separately for registers that are displayed
in hex. For registers that are displayed in binary, you can change each
bit separately. Some of the registers cannot be changed. For instance,
you can’t change the indirect address register (00h). The indirect
address register is not physically implemented in the PIC, so altering it
would have no effect. Also, if the selected device is a PIC16C54 or ’55,
you can’t change the upper two bits of the program counter, since these
devices do not implement these bits. For the ’56, you can’t alter the
upper bit of the program counter.

If you do not have a mouse, you can select a register by pressing and
holding the CTRL key while using the arrow keys to move the cursor.
The cursor will move from register to register as you press the arrow
keys. When the cursor is on the desired register, release the CTRL key

PIC16Cxx Simulator

Page 44 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

and type the desired value for the register. If you are modifying a
register that is displayed in hex, you can type any valid hex character.
If you are modifying a register that is displayed in binary, you can only
type in 0’s and 1’s. You must type in all the numbers that are highlighted
before the new value will be accepted. The cursor will disappear when
you resume simulation.

Watchdog Timer

The watchdog timer may be enabled or disabled using one of two
methods. The first is to include the WDT_ON or WDT_OFF option in
the DEVICE directive in your source code. The second method is to
press Alt-W from within the simulator. A menu will pop up, allowing
you to select “enable” or “disable” with the up and down arrow keys.
Press RETURN when the proper selection is highlighted.

Exiting the Simulator

To exit the simulator, press escape ESC or Alt-X. You will be asked to
verify your decision. Press “Y” to quit or “N” to return to the simulator.

Function Keys

The use of each function key is described in the following text:

F1 Help menu. This displays the help menu. Use the PGDN
key to display the second page of the help menu.

F2 Toggle breakpoint. Toggle breakpoint at the marker
line. To insert a breakpoint at a specific line, use the
cursor keys to scroll the program display up and down
until the desired line is highlighted by the marker, and
then press F2. The line will then turn red to indicate that
a breakpoint is set. Pressing F2 again on the same line will
clear the breakpoint.

F3 Clear all breakpoints.

F4 Execute to marker. Execute code until the marker line
is reached. Pressing F4 will simulate the program line-

PIC16Cxx Simulator

Page 45 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

by-line until the marker is reached. “Running...” will
appear at the bottom of the screen. When the line is
reached, the screen will be updated and the registers that
were altered will be highlighted. To stop the simulation
while it’s running, press any key.

F5 Reset time. Reset the real-time display to zero. This is
useful for timing code execution.

F6 Execute code (with update). Pressing F6 causes the
simulator to start executing code. It will not stop until a
key is pressed or a breakpoint is reached. The screen is
updated and changes are highlighted after each line is executed.

F7 Step line-by-line. This causes one line to be executed.
Changes in the registers are highlighted after the line is
executed. Pressing the space bar also executes one line.

SPACE Step line-by-line. Same as F7.

F8 Execute to next line. Pressing F8 causes the simulator to
execute code until the next line is reached or a breakpoint
is reached. This is useful for executing through subrou-
tine calls. If F8 is pressed when the cursor is on a subrou-
tine call, the simulator will execute the code until the line
after the call is reached. The user can stop execution at
any time by pressing any key. If the F8 key is pressed
when the highlighted line is at the end of the address
space (1FFh for the PIC16C54, etc.), the simulator will
never reach the next line, since it is out of code space. In
this case, the simulator will continue running until a key
is pressed.

F9 Execute code (without update). Pressing F9 causes the
simulator to start executing code. It will not stop until a
key is pressed or a breakpoint is reached. The screen is not
updated until execution is stopped.

F10 Reset PIC. Pressing F10 simulates a hardware reset.

PIC16Cxx Simulator

Page 46 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Alt-C Set crystal frequency. The crystal frequency defaults to
8 Mhz, which is used to calculate execution time. To enter
a new frequency, press Alt-C. A window will pop up,
allowing you to enter the desired value. You can enter
the value in hertz (hz), kilohertz (khz), or megahertz
(Mhz) by typing the value and the appropriate suffix. If
no suffix is entered, the frequency is assumed to be in
hertz. The suffix can be upper or lower case. Some
examples are: 32768, 32768hz, 32.768khz, 1Mhz, 3.57Mhz.

Alt-D Select device type. To select a different device type,
press Alt-D. A menu will appear, allowing you to select
the desired device. Press ENTER when the desired PIC is
highlighted.

You must be careful when using this method. Any code
above the address limit of the newly selected device will
be lost. Also, keep in mind that the PIC16C5x and new
PICs (’71, ’84,...) are not object code compatible. If the
device is set to PIC16C71 while simulating PIC16C5x
code, unexpexted results will occur.

To exit from the device menu without changing the
device type, press ESC.

Alt-E Display EEPROM data. If the simulated PIC has
EEPROM (currently, the ’84), you can view the contents
of the EEPROM data memory by pressing Alt-E. This is
not available when any other PIC is selected.

Alt-F Load file. To load a different listing file, press Alt-F. A
file menu will appear, allowing you to select a file to load.
Listing files are displayed in yellow and directories are in
red (only files with a ‘.lst’ extension are shown). To load
a file, use the cursor keys to highlight the desired file and
then press ENTER. If you need to load a file from a
different directory, move the cursor to the desired direc-
tory and then press ENTER. The display will list the files
in the selected directory for you to choose from. To quit
the file menu without loading in a new file, press ESC.

PIC16Cxx Simulator

Page 47 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Alt-S Display stack. The first two stack locations are dis-
played on the screen at all times. If the PIC being simu-
lated is a new PIC (’71, ’84,...), you can display all stack
locations in a pop up window by pressing Alt-S.

Alt-W Watchdog timer. To enable/disable the watchdog timer,
press Alt-W. A menu will pop up, allowing you to select
“enable” or “disable” with the up and down arrow keys.
Press RETURN when the proper selection is highlighted.

Alt-F4 Jump to marker. Pressing Alt-F4 causes the simulator to
jump to the marker line, without executing any instruc-
tions. This is useful for jumping directly to code
segments that you wish to debug, without having to run
through the normal code execution to get there. It’s also
useful for jumping over long delay loops in your code.

Alt-F7 Back step. Pressing Alt-F7 steps backward one line in
your code. The entire state of the PIC is stored in a 100-
step history buffer. By recalling the history buffer contents,
you can step back through your code (up to 100 steps).

Alt-X Exit simulator. Pressing Alt-X exits the simulator and
returns to DOS. A pop-up prompt will allow you to
confirm the exit command.

Advanced Features

Journal Files

All keystrokes entered during simulation are automatically stored in a
journal file called PSIM.JRN. This file can be “played back” to re-create
a simulator session.

The journal file is automatically created during each simulator session
(unless disabled with the “/J-” option when starting the simulator).
When the simulator is started, any old journal file will be overwritten.
If you want to retain a journal file for later use, rename it or copy it to
another directory.

PIC16Cxx Simulator

Page 48 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

To re-run a journal file, start the simulator by typing the following:

PSIM filename /J=journalfile

where journalfile is the name of the journal file you want to use. This will
load filename and then execute the keystrokes read from the journal file.

The journal file feature is useful for configuring your simulation session
upon startup. For instance, you can initialize an I/O port to a certain
value or set breakpoints in your code. This setup can then be executed
upon startup of later simulation sessions.

Note that the journal file only records keystrokes – mouse actions are
not stored in the file.

Input Stimulus Files

The stimulus file feature allows you to schedule bit changes in I/O port
pins at specified times during simulation. This scheduling is controlled
via a text file called a stimulus file. The “/I=filename” command-line
option is used to read the stimulus file.

The stimulus file is an ASCII text file that contains instructions for
applying stimuli to the I/O pins during simulation. All commands
must be comma separated. White spaces and tabs are ignored. Any line
beginning with a semicolon is a comment line.

There are five schedule commands that tell the simulator when a given
stimulus should be applied. The five commands are:

t = real Provide stimulus when execution time reaches real.
c = int Provide stimulus when cycle counter reaches int.
dt = real Provide stimulus when delta time reaches real.
dc = int Provide stimulus when delta cycles reaches int.
pc = int Provide stimulus when program counter reaches int.

After the schedule command comes the stimulus command. Stimulus
commands can be applied to an individual I/O pin or to a full port. They
can also be applied to the RTCC pin or to any analog inputs (when
simulating a PIC with A/D).

PIC16Cxx Simulator

Page 49 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Simulator

Up to eight bit changes or three port changes can be present on a single
line in the stimulus file. The following are valid stimulus commands:

;This is a comment line. It has no effect on the simulator.

pc=8, ra=2Dh, rb=FEh When the program counter reaches 8,
port A will be set to 2Dh and port B
will be set to FEh.

t=0.00002, ra0=1, ra3=0 When execution time reaches 0.00002
seconds, bit 0 of port A will be set and
bit 3 will be cleared.

c=50, rb0=1 When the cycle counter reaches 50, bit
0 of port B will be set.

dt=0.00001, rb7=1 This sets bit 7 of port B when
dt=0.00001 seconds. In this example,
it will occur 0.00001 seconds after the
last stimulus.

dc=12, rtcc=1 Twelve cycles after the last stimulus,
this sets the RTCC pin.

dc=5, ain2=4.80v Five cycles after the last stimulus, this
sets analog input #2 to 4.8 volts.

Page 50 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Simulator

Command-line Options

The simulator has various options that can be invoked when it’s started.
These options are shown below:

PSIM filename Runs the simulator and loads
filename.lst.

PSIM filename.xxx Runs the simulator and loads
filename.xxx.

PSIM filename /D=device Sets device type to device, where
device is “54”, “55”, “16C71”, etc.

PSIM filename /E- Disables serial port checking for
ClearView emulators.

PSIM filename /E=port Causes the simulator to only look
for an emulator on the serial port
specified, where port is a number
from 1 to 4 (note: 1 & 2 work best).

Normally, the simulator checks all
ports for the presence of emulators.
This may disturb other serial
devices, such as mice. If you have
such problems, try specifying the
emulator port, as described above.

PSIM filename /F- Disables serial port checking for
Reflection.

PSIM filename /F=port Causes the simulator to only look
for Reflection on the serial port
specified, where port is a number
from 1 to 4 (note: 1 & 2 work best).

Normally, the simulator checks all
ports for the presence of Reflection.
This may disturb other serial

Page 51 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

devices, such as mice. If you have
such problems, try specifying the
Reflection port, as described above.

PSIM filename /I=stimfile Runs the simulator and loads
filename.lst. Then loads and runs the
stimulus file called stimfile.

PSIM filename /J- Disables the saving of keystrokes in
a journal file.

PSIM filename /J=journalfile Runs the simulator and loads
filename.lst. Then executes key-
strokes from journalfile.

PSIM filename /L Causes the simulator to run
ClearView ’5x or ClearView ’xx in
“low speed” mode.

To avoid errors, this should be used
if you’re running the emulator at
speeds below 500 kHz.

PSIM filename /O=osc Configures the ClearView hardware
to work with the specified oscillator.

Osc may be specified as RC, XT, HS,
or LP.

This option may be necessary if the
oscillator type is not specified in
your source code.

PSIM filename /P=port,int Causes the simulator to use the
specified serial port and interrupt
for communication with Reflection
or ClearView.

Port is the base address (in hex) of
the serial port, and int is the

PIC16Cxx Simulator

Page 52 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

associated interrupt. An example
would be “/P=3E8,9”.

This option may be necessary if the
serial port uses a non-standard base
address and interrupt.

PSIM filename /R Causes the simulator to start with
registers in a random state, which
more accurately simulates a real PIC.

PSIM filename /S Disables normal stack overflow and
underflow error detection.

PSIM filename /X=xtal Sets crystal frequency to xtal, where
xtal is “4mhz”, “3.12khz”, “1000hz”,
etc.

PSIM filename /? Display help menu which shows
valid command-line options.

These options may have changed
since the printing of this manual.

PIC16Cxx Simulator

Page 53 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

The PIC16Cxx Programmer allows you to program, read, and verify
PICs. The programmer’s single-screen software makes programming a
snap. And inexpensive upgrades and adapters keep the programmer
current with the growing family of PIC16Cxx chips.

As of January, 1995, the programmer supports the PIC16C5x, 16C64
(with adapter), 16C71, 16C74 (with adapter), and 16C84. Adapters are
available with ZIF, SOIC, and SSOP sockets.

Page 54 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 55 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

System Requirements

To use the PIC16Cxx Programmer, you will need the following items:

• IBM PC or compatible computer
• 3.5-inch disk drive
• Parallel port
• 128K of RAM
• MS-DOS 2.0 or greater

If you plan to write your own PIC programs, you will also need the
following software:

• Text editor or word processor capable of saving ASCII files

Packing List

The programmer package should contain the following items. If any are
missing, please let us know.

• Programmer PC board

• Power supply*

• DB25-to-RJ11 adapter

• 4-conductor telephone cable (7 feet)

• PIC Tools diskette

* Power supplies are only shipped with orders to the United States
and Canada. If your order was shipped to another country, you
will need to obtain power supplies with the proper output
voltage and current:

12 VAC or 16 VDC, 250 mA

Page 56 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Hardware Features

PIC16Cxx Programmer

POWER
JACK

28-PIN
LIF SOCKET

RJ11
JACK

26-PIN
HEADER

18-PIN
LIF SOCKET

Power Jack: Accepts power from external power supply. A “wall
pack” power supply is included with orders shipped to the United
States and Canada.

RJ11 Jack: Connects to PC parallel port via 4-conductor telephone
cable.

18- and 28-pin LIF Sockets: Accept PICs for programming and
reading. Voltage is only applied to these sockets when the programmer
is programming or reading a device.

26-pin Header: Used for connecting optional socket adapters. At this
time, we offer adapters with ZIF, SOIC, and SSOP sockets.

Page 57 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Programmer Installation

To install your programmer, follow these steps:

1) Plug the power supply into an AC outlet.

2) Plug the power supply cord into the programmer’s power jack.

3) Plug one end of the 7-foot telephone cable into the DB25-to-
RJ11 adapter.

4) Plug the DB25-to-RJ11 adapter into an available parallel port
on your PC.

5) Plug the other end of the telephone cable into the programmer’s
RJ11 jack.

6) If you have an optional ZIF or surface-mount programming
adapter, attach it to the dual-row header on the right side of the
programmer. A short 1-inch ribbon cable (supplied with the
adapter) makes attachment simple.

Page 58 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Running the Software

To run the programmer software, make sure you’re in the PIC16C5x or
PIC16Cxx directory and then type

PEP (16C5x) or PEPX (new PICs)

from the DOS prompt. After several seconds, you’ll see the screen
shown below (the PEPX screen is slightly different):

The software will automatically adjust to the type of display you are
using. However, if you are using a laptop computer that has a mono-
chrome display, you may have to tell the software to use monochrome
attributes. To do this, type PEP /M from the DOS prompt.

The following pages describe the functions available from this screen.
To exit the software, press ESC.

 DEVICE: 54 55 56 57 58 PIC16C5x-PGM/EMU
 OSCILLATOR: RC HS XT LP (C)1994 Parallax
 WATCHDOG: ON OFF
 CODE PROTECT: OFF ON ID: FFFF CHECKSUM

 000- FFF FFF FFF FFF FFF FFF FFF FFF
 008- FFF FFF FFF FFF FFF FFF FFF FFF
 010- FFF FFF FFF FFF FFF FFF FFF FFF
 018- FFF FFF FFF FFF FFF FFF FFF FFF
 020- FFF FFF FFF FFF FFF FFF FFF FFF
 028- FFF FFF FFF FFF FFF FFF FFF FFF
 030- FFF FFF FFF FFF FFF FFF FFF FFF
 038- FFF FFF FFF FFF FFF FFF FFF FFF

 HEX ENTRY ASCII ENTRY FILL (↵)

 PROGRAM EMULATE ESC EXIT
 VERIFY
 READ LOAD:
 BLANK CHECK SAVE:

Page 59 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Device-Specific Options

There are several options at the top of the screen that are specific to the
device you’re using. These options are listed on below:

Device: Pressing ‘D’ selects the type of device you’re using.
In PEP, the possible settings are 54, 55, 56, and 57.

In PEPX, the possible settings are 64, 71, 74, and 84.
Microchip is introducing new PICs every year, so there
may be more settings in PEPX.

Oscillator: Pressing ‘O’ selects the type of oscillator you intend
to use with the device selected. Possible settings
are RC, HS, XT, and LP.

Watchdog: Pressing ‘W’ toggles the PIC’s watchdog timer.
Possible settings are ON and OFF.

Timer: Pressing ‘T’ toggles the PIC’s power-up timer.
Possible settings are ON and OFF.
This option only appears in PEPX.

Code Protect: Pressing ‘C’ toggles the device’s code protect bit.
Possible settings are ON and OFF. If code protect
is on, you will not be able to read the device after
programming.

ID: In PEP, pressing ‘I’ toggles the device ID between
a checksum and a 2-byte hex value.

In PEPX, pressing ‘I’ allows you to enter a
4-character text ID.

Programming a PIC

To program a PIC, insert it into the appropriate socket on the programmer
and then press ‘P’. When programming a part, the software performs
three steps: blank check, program, and verify. If any step fails, the
software will stop and indicate the error.

Page 60 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

If you need to program PICs that are already partically programmed,
you can do so by disabling the normal blank-check before programming.
To disable blank-check, use the “/d” command-line option when
starting PEP or PEPX.

For more information, see the Command-Line Options section at the
end of this chapter.

Verifying a Device

To verify that a device equals the data on the screen, press ‘V’. The
software will compare the following aspects of the device: program
memory, oscillator type, watchdog status, power-up timer status
(if PEPX), code protect status, and ID. If there are any differences, they
will be shown as in the following screen:

 DEVICE: 54 55 56 57 58 PIC16C5x-PGM/EMU
 OSCILLATOR: RC HS XT LP (C)1994 Parallax
 WATCHDOG: ON OFF
 CODE PROTECT: OFF ON ID: FFFF CHECKSUM

 Verify Error Expected Found
 OSCILLATOR RC XT
 001- 111 FFF
 002- FF1 FFF

 Hit any key

 HEX ENTRY ASCII ENTRY FILL (↵)

 PROGRAM EMULATE ESC EXIT
 VERIFY
 READ LOAD:
 BLANK CHECK SAVE:

Page 61 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Reading a PIC

To read a PIC, insert the device and then press ‘R’. The software will
read the device’s program memory, oscillator type, watchdog status,
power-up timer status (if PEPX), code protect status, and ID.

Checking Device Erasure

To find whether or not a device is erased (blank), press ‘B’. The software
will display the percentage of locations that are erased, as in the
following screen:

 DEVICE: 54 55 56 57 58 PIC16C5x-PGM/EMU
 OSCILLATOR: RC HS XT LP (C)1994 Parallax
 WATCHDOG: ON OFF
 CODE PROTECT: OFF ON ID: FFFF CHECKSUM

 ERROR: Device is 79% erased

 Hit any key

 HEX ENTRY ASCII ENTRY FILL (↵)

 PROGRAM EMULATE ESC EXIT
 VERIFY
 READ LOAD:
 BLANK CHECK SAVE:

If you have an erasable PIC that reports 99% erased, it probably needs
further erasing. Sometimes, the oscillator bits are not erased at the
factory, so even new chips will give this error.

Page 62 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Loading a File from Disk

To load an object file from disk, press ‘L’. Blinking arrows will appear
to the right of the word “Load”. These arrows indicate that you may
enter a filename:

When you have entered the filename, or if the current filename is
correct, press RETURN. The software will then attempt to load the
specified file. If an error occurs while loading the file, the appropriate
message will be displayed.

 DEVICE: 54 55 56 57 58 PIC16C5x-PGM/EMU
 OSCILLATOR: RC HS XT LP (C)1994 Parallax
 WATCHDOG: ON OFF
 CODE PROTECT: OFF ON ID: FFFF CHECKSUM

 000- FFF FFF FFF FFF FFF FFF FFF FFF
 008- FFF FFF FFF FFF FFF FFF FFF FFF
 010- FFF FFF FFF FFF FFF FFF FFF FFF
 018- FFF FFF FFF FFF FFF FFF FFF FFF
 020- FFF FFF FFF FFF FFF FFF FFF FFF
 028- FFF FFF FFF FFF FFF FFF FFF FFF
 030- FFF FFF FFF FFF FFF FFF FFF FFF
 038- FFF FFF FFF FFF FFF FFF FFF FFF

 HEX ENTRY ASCII ENTRY FILL (↵)

 PROGRAM EMULATE ESC EXIT
 VERIFY
 READ LOAD:>>FILE.OBJ <<
 BLANK CHECK SAVE:

Page 63 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Saving a File on Disk

To save the buffer data and device options on disk, press ‘S’. Blinking
arrows will appear to the right of the word “Save”. These arrows
indicate that you may enter a filename.

When you have entered the filename, or if the current filename is
correct, press RETURN. The software will then attempt to save the file.
If the file already exists, it will be overwritten. If an error occurs while
saving the file, the appropriate message will be displayed.

Saved files contain the buffer data, as well as device type, oscillator
type, watchdog status, power-up timer status (if PEPX), code protect
status, and device ID.

Moving Around in the Buffer

To move the buffer’s cursor, the normal editing keys are used. The effect
of each key is shown below:

Left arrow Moves the cursor 1 location to the left.

Right arrow Moves the cursor 1 location to the right.

Up arrow Moves the cursor 1 line up (8 locations).

Down arrow Moves the cursor 1 line down (8 locations).

PGUP Moves the cursor 8 lines up (64 locations).

PGDN Moves the cursor 8 lines down (64 locations).

HOME Moves the cursor to the first location in the buffer.

END Moves the cursor to the last location in the buffer.

Editing the Buffer

There are three methods available for editing the buffer. These methods
are described on the following page:

Page 64 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Hex entry: Pressing ‘H’ invokes the hex entry mode. In this
mode, any valid hex values that you type are
entered into the buffer at the current cursor loca-
tion. To exit hex entry mode, press RETURN or
ESC.

ASCII entry: Pressing ‘A’ selects the ASCII entry mode. In this
mode, any keys that you type are entered into the
buffer as 3-digit values. These 3-digit values are
comprised of the number ‘8’ and the ASCII value
for the key typed. For instance, if you type ‘X’, the
value ‘878’ will be entered into the buffer (78 is the
ASCII value for the letter ‘X’). The number ‘8’ is the
opcode for the “retw” instruction, which loads the
subsequent value (78, for instance) into the W
register and then returns to the calling routine.
This is useful for creating lookup tables.

Fill: Pressing ‘F’ invokes the fill mode. In this mode,
you can fill a portion of the buffer with a specific
value.

To fill an area, follow these steps:

1) Place the cursor at the first location within the
area to be filled.

2) Press ‘F’ to invoke the fill mode.

3) Move the cursor to the last location within the
area to be filled.

4) Press RETURN. The area from the first location
to the last will be filled with the value in the
first location.

Page 65 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Command-Line Options

The programmer software has several useful options that can be
specified from the DOS command-line. The use of these options is
shown below:

PEP Runs programmer software for PIC16C5x
devices.

PEPX Runs programmer software for newer PICs
(16C64, 16C71, 16C74, 16C84,...).

PEP filename Runs software and loads filename.

PEP filename /D Disables blank-check function normally
used before programming.

This must be done if you wish to program
PICs that are partially programmed.

PEP filename /M Runs software in monochrome mode.

PEP filename /P Runs software, loads filename, and then
programs a device. These operations take
place entirely from the command-line (the
normal display is never seen). This is useful
if you want to include the programming
process as part of a batch file.

Page 66 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Error Messages

The following list shows the errors that may occur while using the
programmer software:

Device is not erased: The PIC you’re trying to program is
not erased or is not in a socket.

Device is 99% erased: The PIC that you’re trying to
program is only 99% erased.

Under normal conditions, the PIC
must be completely erased before
the programmer will program it.

To disable blank-check before
programming, use the “/D” option
when starting PEP or PEPX.

Also, some erasable PICs may give
this error when they’re new. This is
because the factory does not always
erase the oscillator bits. This is easily
remedied by erasing the part with a
UV eraser.

Verify error: The software found a descrepency
between the data on the screen and
the data in the PIC.

Difference(s) may be in the program
memory, oscillator type, watchdog
status, power-up timer status (if
PEPX), code protect status, or ID.

PIC16Cxx-PGM not found: The software could not find the
programmer on any parallel port.

Hardware not found: The software could not find the
programmer (in PEPX).

Page 67 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Programming Adapters

On the right side of the programmer, you’ll see a dual-row header next
to the 28-pin LIF socket. This header allows connection of optional
programming adapters.

As of November, 1994, four adapters are available:

40-pin ZIF adapter allows programming
of larger PICs, such as 16C64 & 16C74.

18/28-pin ZIF adapter makes production
programming easier.

20/28-pin SSOP adapter supports SSOP
surface-mount PICs.

18/28-pin SOIC adapter supports SOIC
surface-mount PICs.

Page 68 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Adapter Header Pin-Out

On the previous page, the various programming adapters are shown.
As mentioned on that page, the adapters connect to a 26-pin dual-row
header, located next to the 28-pin LIF socket.

In some cases, you might prefer to make your own adapters. If so, use
the pin-out shown below to connect the header pins to the correspond-
ing pins on the adapter socket(s):

Example circuit for
programming the

16C64/74.

When wiring your adapter, use the following guidelines:

• If the adapter will accept 16C5x devices, you must connect all of
the signals shown.

• If the adapter will only accept newer 16Cxx devices (16C64,
16C71, etc.), you only need to connect the six signals shown in
italic print.

Page 69 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Programmer

Parallel Port Cable Assembly

If you purchased the programmer as part of the Hobbyist Pack, you’ll
need to make a cable to connect the programmer to your PC.

Most customers use a standard (not flipped) 4-conductor telephone
cable; such cables are used with telephones, modems, and other com-
mon devices. One end plugs into the programmer’s RJ11 jack, and the
other end is cut off and replaced with a male DB25 connector.

The cable wiring is shown below:

PC Parallel Port
(DB25 female)

Programmer RJ11 Jack
(RJ11 female)

211

25

Page 70 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

PIC16Cxx Instruction Set

Parallax Version

Page 120 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 121 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Instruction Set

Parallax Instruction Set

ADD fr,#lit
ADD fr1,fr2
ADD fr,W
ADD W,fr
ADDB* fr,bit
AND fr,#lit
AND fr1,fr2
AND fr,W
AND W,#lit
AND W,fr
CALL addr8
CJA fr,#lit,addr9
CJA fr1,fr2,addr9
CJAE fr,#lit,addr9
CJAE fr1,fr2,addr9
CJB fr,#lit,addr9
CJB fr1,fr2,addr9
CJBE fr,#lit,addr9
CJBE fr1,fr2,addr9
CJE fr,#lit,addr9
CJE fr1,fr2,addr9
CJNE fr,#lit,addr9
CJNE fr1,fr2,addr9
CLC
CLR fr
CLR W
CLR WDT
CLRB bit
CLZ
CSA fr,#lit
CSA fr1,fr2
CSAE fr,#lit
CSAE fr1,fr2
CSB fr,#lit
CSB fr1,fr2
CSBE fr,#lit
CSBE fr1,fr2
CSE fr,#lit
CSE fr1,fr2

MOVB bit1,/bit2
MOVSZ W,++fr
MOVSZ W,--fr
NEG* fr
NOP
NOT fr
NOT W
OR fr,#lit
OR fr1,fr2
OR fr,W
OR W,#lit
OR W,fr
RET
RETW lit,lit,...
RL fr
RR fr
SB bit
SC
SETB bit
SKIP
SLEEP
SNB bit
SNC
SNZ
STC
STZ
SUB fr,#lit
SUB fr1,fr2
SUB fr,W
SUBB* fr,bit
SWAP fr
SZ
TEST fr
XOR fr,#lit
XOR fr1,fr2
XOR fr,W
XOR W,#lit
XOR W,fr

CSNE fr,#lit
CSNE fr1,fr2
DEC fr
DECSZ fr
DJNZ fr,addr9
IJNZ fr,addr9
INC fr
INCSZ fr
JB bit,addr9
JC addr9
JMP addr9
JMP PC+W
JMP W
JNB bit,addr9
JNC addr9
JNZ addr9
JZ addr9
LCALL* addr11
LJMP* addr11
LSET* addr11
MOV fr,#lit
MOV fr1,fr2
MOV fr,W
MOV OPTION,#lit
MOV OPTION,fr
MOV OPTION,W
MOV !port_fr,#lit
MOV !port_fr,fr
MOV !port_fr,W
MOV W,#lit
MOV W,fr
MOV W,/fr
MOV W,fr-W
MOV W,++fr
MOV W,--fr
MOV W,<<fr
MOV W,>>fr
MOV W,<>fr
MOVB bit1,bit2

* These instructions are not available in PASMX.

Page 122 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 123 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

ADD fr,#literal
Add literal into fr

Words: 2 Cycles: 2 Affects: W, C, DC, Z

Operation: Literal is added into fr via W. C will be set if an overflow occurs;
otherwise, C will be cleared. DC will be set or cleared depending
on whether or not an overflow occurs in the lower nibble. Z will be
set if the result is 0; otherwise, Z will be cleared. W is left holding
the literal value.

Coding: 1100 kkkk kkkk MOV W,#lit (MOVLW lit)
0001 111f ffff ADD fr,W (ADDWF fr,1)

Example: Sample holds 90h.

add sample,#5

Sample now holds 95h (90h+5). Both C and DC are cleared since
no overflow occurred in the byte or in the lower nibble. Z is cleared
since the result was not 0. W is left holding the literal 5.

ADD fra,frb
Add frb into fra

Words: 2 Cycles: 2 Affects: W, C, DC, Z

Operation: Frb is added into fra via W. C will be set if an overflow occurs;
otherwise, C will be cleared. DC will be set or cleared depending
on whether or not an overflow occurs in the lower nibble. Z will be
set if the result is 0; otherwise, Z will be cleared. W is left holding
the contents of frb.

Coding: 0010 000f ffff MOV W,frb (MOVF frb,0)
0001 111f ffff ADD frs,W (ADDWF frs,1)

Example: Sum holds 0F9h and clicks holds 10h.

add sum,clicks

Sum now holds 9h (the lower byte of 0F9h+10h). C is set since an
overflow occurred in the byte; however, DC is cleared since there
was no overflow in the lower nibble. Z is cleared since the result was
not 0. W is left holding 10h (contents of clicks).

Page 124 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

ADD fr,W
Add W into fr

Words: 1 Cycles: 1 Affects: C, DC, Z

Operation: W is added into fr. C will be set if an overflow occurrs, otherwise C
will be cleared. DC will be set or cleared depending on whether or
not an overflow occurs in the lower nibble. Z will be set if the result
is 0, otherwise Z will be cleared.

Coding: 0001 111f ffff ADD fr,W (ADDWF fr,1)

Example: Offset holds 2Bh and W holds 45h.

add offset,w

Offset now holds 70h (2Bh+45h). C is cleared since no overflow
occurred in the byte; however, DC is set since there was an
overflow in the lower nibble. Z is cleared since the result was not
0.

ADD W,fr
Add fr into W

Words: 1 Cycles: 1 Affects: C, DC, Z

Operation: Fr is added into W. C will be set if an overflow occurs, otherwise C
will be cleared. DC will be set or cleared depending on whether or
not an overflow occurs in the lower nibble. Z will be set if the result
is 0, otherwise Z will be cleared.

Coding: 0001 110f ffff ADD W,fr (ADDWF fr,0)

Example: W holds 0E8h and count holds 18h.

add w,count

W now holds 0h (the lower byte of 0E8h+18h). Both C and DC are
set since an overflow occured in the byte and in the lower nibble.
Z is set since the result was 0.

Page 125 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

AND literal into fr

Words: 2 Cycles: 2 Affects: W, Z

Operation: Literal is AND’d into fr via W. Z will be set if the result is 0; otherwise,
Z will be cleared.

Coding: 1100 kkkk kkkk MOV W,#lit (MOVLW lit)
0001 011f ffff AND fr,W (ANDWF fr,1)

Example: Byte holds 11011011b.

and byte,#1111b

Byte now holds 00001011b (11011011b AND 00001111b). Z is
cleared since the result was not 0. W is left holding the literal
1111b .

ADDB* fr,bit
Add bit into fr

Words: 2 Cycles: 2 Affects: Z

Operation: If bit is set, fr is incremented. If fr is incremented, Z will be set if the
result is 0; otherwise, Z will be cleared. This instruction is useful for
adding the carry into the upper byte of a double-byte sum after the
lower byte has been computed.

Coding: 0110 bbbf ffff SNC bit (BTFSC bit)
0010 101f ffff INC fr (INCF fr,1)

Example: Sum_high holds 34h and C is set.

addb sum_high,c

Sum_high now holds 35h (34h+1b). Z is cleared since sum_high
was incremented and the result was not 0.

AND fr,#literal

* This instruction is not available in PASMX.

Page 126 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

AND fra,frb
AND frb into fra

Words: 2 Cycles: 2 Affects: W, Z

Operation: Frb is AND’d into fra via W. Z will be set if the result is 0; otherwise,
Z will be cleared.

Coding: 0010 000f ffff MOV W,frb (MOVF fr2,0)
0001 011f ffff AND fra,W (ANDWF fr1,1)

Example: Data holds 7Ch and mask holds 0A5h.

and data,mask

Data now holds 24h (7Ch AND 0A5h). Z is cleared since the result
was not 0. W is left holding 0A5h (mask).

AND fr,W
AND W into fr

Words: 1 Cycles: 1 Affects: Z

Operation: W is AND’d into fr. Z will be set if the result is 0; otherwise, Z will be
cleared.

Coding: 0001 011f ffff AND fr,W (ANDWF fr,1)

Example: Serial_in holds 00011010b and W holds 11100000b.

and serial_in,w

Serial_in now holds 00000000b (00011010b AND 11100000b).
Z is set since the result was 0.

Page 127 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

AND W,#literal
AND literal into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Literal is AND’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 1110 kkkk kkkk ANDLW literal

Example: W holds 37h (00110111b). The following instruction is executed:

and w,#0F0h

W now holds 30h or 00110000b (00110111b AND 11110000b). Z
is cleared since the result was not 0.

AND W,fr
AND fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is AND’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 0001 010f ffff ANDWF fr,0

Example: W holds 69h (01101001b) and filter holds 96h (10010110b). The
following instruction is executed:

and w,filter

W now holds 0h or 00000000b (01101001b AND 10010110b). Z is
set since the result was 0.

Page 128 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CALL addr8
Call subroutine.

Words: 1 Cycles: 2 Affects: none

Operation: The next instruction address is pushed onto the stack and addr8 is
moved to the program counter. The ninth bit of the program counter
will be cleared to 0. Therefore, calls are only allowed to the first half
of any 512-word page, although the CALL instruction can be
anywhere.

Coding: 1001 kkkk kkkk CALL addr8

Example: The program counter is at 130h and send_byte=29h. The following
instruction is executed:

call send_byte

The incremented value of the program counter (131h) is pushed
onto the stack and a jump to send_byte (029h) is executed.

CJA fr,#literal,addr9
Compare fr to literal and jump if above.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is greater than literal, a jump to
addr9 is executed.

Coding: 1100 kkkk kkkk MOVLW literal^0FFh
0001 110f ffff ADDWF fr,0
0110 0000 0011 BTFSC 3,0
101k kkkk kkkk GOTO addr9

Example: X_pos holds 0CCh, limit=0C0h, and outside=45h. The following
instruction is executed:

cja x_pos,#limit,outside

Because x_pos (0CCh) is above limit (0C0h), a jump to outside
(45h) is executed. W, C, DC, and Z are scrambled.

Page 129 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CJA fr1,fr2,addr9
Compare fr1 to fr2 and jump if above.

Words: 4 Cycles: 4 or 5 (jump) Affects: W, C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is greater than fr2, a jump to
addr9 is executed.

Coding: 0010 000f ffff MOVF fr1,0
0000 100f ffff SUBWF fr2,0
0111 0000 0011 BTFSS 3,0
101k kkkk kkkk GOTO addr9

Example: Input holds 64h, max holds 0ACh, and update=168h. The
following instruction is executed:

cja input,max,update

Because input (64h) is not above max (0ACh), a jump to update
(168h) is not executed. W, C, DC, and Z are scrambled.

CJAE fr,#literal,addr9
Compare fr to literal and jump if above or equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is greater than or equal to literal,
a jump to addr9 is executed.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0110 0000 0011 BTFSC 3,0
101k kkkk kkkk GOTO addr9

Example: Trigger holds 10h and fire=115h. The following instruction is
executed:

cjae trigger,#10h,fire

Because trigger (10h) is above or equal to 10h, a jump to fire
(115h) is executed. W, C, DC, and Z are scrambled.

Page 130 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CJAE fr1,fr2,addr9
Compare fr1 to fr2 and jump if above or equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is greater than or equal to fr2,
a jump to addr9 is executed.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0110 0000 0011 BTFSC 3,0
101k kkkk kkkk GOTO addr9

Example: Input holds 64h, max holds 0ACh, and update=168h. The
following instruction is executed:

cja input,max,update

Because input (64h) is not above max (0ACh), a jump to update
(168h) is not executed. W, C, DC, and Z are scrambled.

CJB fr,#literal,addr9
Compare fr to literal and jump if below.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is less than literal, a jump to addr9
is executed.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0111 0000 0011 BTFSS 3,0
101k kkkk kkkk GOTO addr9

Page 131 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CJB fr1,fr2,addr9
Compare fr1 to fr2 and jump if below.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is less than fr2, a jump to addr9
is executed.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0111 0000 0011 BTFSS 3,0
101k kkkk kkkk GOTO addr9

CJBE fr,#literal,addr9
Compare fr to literal and jump if below or equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is less than or equal to literal, a
jump to addr9 is executed.

Coding: 1100 kkkk kkkk MOVLW /literal
0001 110f ffff ADDWF fr,0
0111 0000 0011 BTFSS 3,0
101k kkkk kkkk GOTO addr9

Page 132 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CJBE fr1,fr2,addr9
Compare fr1 to fr2 and jump if below or equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is less than or equal to fr2, a jump
to addr9 is executed.

Coding: 0010 000f ffff MOVF fr1,0
0000 100f ffff SUBWF fr2,0
0110 0000 0011 BTFSS 3,0
101k kkkk kkkk GOTO addr9

CJE fr,#literal,addr9
Compare fr to literal and jump if equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is equal to literal, a jump to addr9
is executed.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0110 0100 0011 BTFSC 3,2
101k kkkk kkkk GOTO addr9

Page 133 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CJE fr1,fr2,addr9
Compare fr1 to fr2 and jump if equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is equal to fr2, a jump to addr9
is executed.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0110 0100 0011 BTFSC 3,2
101k kkkk kkkk GOTO addr9

CJNE fr,#literal,addr9
Compare fr to literal and jump if not equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is not equal to literal, a jump to
addr9 is executed.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0111 0100 0011 BTFSS 3,2
101k kkkk kkkk GOTO addr9

Page 134 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CJNE fr1,fr2,addr9
Compare fr1 to fr2 and jump if not equal.

Words: 4 Cycles: 4 or 5 (jump) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is not equal to fr2, a jump to addr9
is executed.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0111 0100 0011 BTFSS 3,2
101k kkkk kkkk GOTO addr9

CLC
Clear carry.

Words: 1 Cycles: 1 Affects: C

Operation: C is cleared to 0.

Coding: 0100 0000 0011 BCF 3,0

Example: The carry is set. The following instruction is executed:

clc

The carry is now cleared.

Page 135 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CLR fr
Clear fr.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is cleared to 0. Z is set to 1.

Coding: 0000 011f ffff CLRF fr

Example: Counter holds 45h. The following instruction is executed:

clr counter

Counter now holds 0h and Z is set.

CLR W
Clear W.

Words: 1 Cycles: 1 Affects: Z

Operation: W is cleared to 0. Z is set to 1.

Coding: 0000 0100 0000 CLRW

Example: W holds 0F3h. The following instruction is executed:

clr w

W now holds 0h and Z is set.

Page 136 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CLR WDT
Clear the watchdog timer.

Words: 1 Cycles: 1 Affects: TO, PD

Operation: The watchdog timer is cleared, along with the prescaler, if assigned.
TO and PD are set to 1.

Coding: 0000 0000 0100 CLRWDT

Example: The prescaler holds 100b and is assigned to the watchdog timer.
The following instruction is executed:

clr wdt

The watchdog timer is cleared and the prescaler now holds 000b.
TO and PD are set.

CLRB bit
Clear bit.

Words: 1 Cycles: 1 Affects: none

Operation: Bit is cleared to 0.

Coding: 0100 bbbf ffff BCF bit

Example: Out_bit is set. The following instruction is executed:

clrb out_bit

Out_bit is now cleared.

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

Page 137 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CLZ
Clear zero.

Words: 1 Cycles: 1 Affects: Z

Operation: Z is cleared to 0.

Coding: 0100 0100 0011 BCF 3,2

Example: Z is cleared. The following instruction is executed:

clz

Z remains cleared.

Compare fr to literal and skip if above.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is greater than literal, the
following instruction word is skipped.

Coding: 1100 kkkk kkkk MOVLW /literal
0001 110f ffff ADDWF fr,0
0111 0000 0011 BTFSS 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSA may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSA is a single-word instruction.

CSA fr,#literal

Page 138 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CSA fr1,fr2
Compare fr1 to fr2 and skip if above.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is greater than fr2, the following
instruction word is skipped.

Coding: 0010 000f ffff MOVF fr1,0
0000 100f ffff SUBWF fr2,0
0110 0000 0011 BTFSC 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSA may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSA is a single-word instruction.

Compare fr to literal and skip if above or equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is greater than or equal to literal,
the following instruction word is skipped.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0111 0000 0011 BTFSS 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSAE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSAE is a single-word instruction.

CSAE fr,#literal

Page 139 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CSAE fr1,fr2
Compare fr1 to fr2 and skip if above or equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is greater than or equal to fr2,
the following instruction word is skipped.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0111 0000 0011 BTFSS 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSAE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSAE is a single-word instruction.

CSB fr,#literal
Compare fr to literal and skip if below.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is less than literal, the following
instruction word is skipped.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0110 0000 0011 BTFSC 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSB may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSB is a single-word instruction.

Page 140 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CSB fr1,fr2
Compare fr1 to fr2 and skip if below.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr1 is compared to fr2via W. If fr1 is less than fr2, the following
instruction word is skipped.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0110 0000 0011 BTFSC 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSB may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSB is a single-word instruction.

Compare fr to literal and skip if below or equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is less than or equal to literal, the
following instruction word is skipped.

Coding: 1100 kkkk kkkk MOVLW /literal
0001 110f ffff ADDWF fr,0
0110 0000 0011 BTFSC 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSBE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSBE is a single-word instruction.

CSBE fr,#literal

Page 141 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CSBE fr1,fr2
Compare fr1 to fr2 and skip if below or equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is less than or equal to fr2, the
following instruction word is skipped.

Coding: 0010 000f ffff MOVF fr1,0
0000 100f ffff SUBWF fr2,0
0111 0000 0011 BTFSS 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSBE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSBE is a single-word instruction.

CSE fr,#literal
Compare fr to literal and skip if equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is equal to literal, the following
instruction word is skipped.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0111 0100 0011 BTFSS 3,2

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSE is a single-word instruction.

Page 142 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CSE fr1,fr2
Compare fr1 to fr2 and skip if equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is equal to fr2, the following
instruction word is skipped.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0111 0100 0011 BTFSS 3,2

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSE is a single-word instruction.

Compare fr to literal and skip if not equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr is compared to literal via W. If fr is not equal to literal, the following
instruction word is skipped.

Coding: 1100 kkkk kkkk MOVLW literal
0000 100f ffff SUBWF fr,0
0110 0100 0011 BTFSC 3,2

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSNE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSNE is a single-word instruction.

CSN E fr,#literal

Page 143 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CSN E fr1,fr2
Compare fr1 to fr2 and skip if not equal.

Words: 3 Cycles: 3 or 4 (skip) Affects: C, DC, Z

Operation: Fr1 is compared to fr2 via W. If fr1 is not equal to fr2, the following
instruction word is skipped.

Coding: 0010 000f ffff MOVF fr2,0
0000 100f ffff SUBWF fr1,0
0110 0100 0011 BTFSC 3,2

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, CSNE may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following CSNE is a single-word instruction.

DEC fr
Decrement fr.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is decremented. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 0000 111f ffff DECF fr,1

Example: Points holds 29h. The following instruction is executed:

dec points

Points now holds 28h. Z is cleared since the result was not 0.

Page 144 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

DECSZ fr
Decrement fr and skip if zero.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: Fr is decremented. The next instruction word will be skipped if the
result was 0.

Coding: 0010 111f ffff DECFSZ fr,1

Example: Blip holds 1h. The following instruction is executed:

decsz blip

Blip now holds 0h. The following instruction word will be skipped
since the result was 0.

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, DECSZ may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following DECSZ is a single-word instruction.

DJNZ fr,addr9
Decrement fr and jump if not zero.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: Fr is decremented. If the result is not 0, a jump to addr9 is executed.

Coding: 0010 111f ffff DECFSZ fr,1
101k kkkk kkkk GOTO addr9

Example: Attempts holds 41h and try_again=37h. The following instruction
is executed:

djnz attempts,try_again

Attempts now holds 40h. Since the result was not 0, a jump to
try_again (37h) is executed.

Page 145 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

IJNZ fr,addr9
Increment fr and jump if not zero.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: Fr is incremented. If the result is not 0, a jump to addr9 is executed.

Coding: 0011 111f ffff INCFSZ fr,1
101k kkkk kkkk GOTO addr9

Example: Counter holds 0FFh. The following instruction is executed:

ijnz counter,loop

Counter now holds 0h. Since the result was 0, execution continues
at the next instruction. Had the result been other than 0, a jump to
loop would have been executed.

INC fr
Increment fr.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is incremented. Z will be set if the result was 0, otherwise Z will
be cleared.

Coding: 0010 101f ffff INCF fr,1

Example: Scan holds 0B5h. The following instruction is executed:

inc scan

Scan now holds 0B6h. Z is cleared since the result was not 0.

Page 146 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

INCSZ fr
Increment fr and skip if zero.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: Fr is incremented. The next instruction word will be skipped if the
result was 0.

Coding: 0011 111f ffff INCFSZ fr,1

Example: Turns holds 3h. The following instruction is executed:

incsz turns

Turns now holds 4h. The following instruction word will not be
skipped since the result was not 0.

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, INCSZ may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following INCSZ is a single-word instruction.

JB bit,addr9
Jump if bit.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: If bit is set, a jump to addr9 is executed.

Coding: 0110 bbbf ffff BTFSC bit
101k kkkk kkkk GOTO addr9

Example: Flag is set. The following instruction is executed:

jb flag,process

Since flag is set, a jump to process is executed. Had flag been
clear, execution would have continued at the next instruction.

Page 147 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

JC addr9
Jump if carry.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: If the carry bit is set, a jump to addr9 is executed.

Coding: 0110 0000 0011 BTFSC 3,0
101k kkkk kkkk GOTO addr9

Example: The carry is clear. The following instruction is executed:

jc handle_bit

Since the carry is clear, execution continues at the next instruction.
Had the carry been set, a jump to handle_bit would have been
executed.

JMP addr9
Jump to address.

Words: 1 Cycles: 2 Affects: none

Operation: The lower 9-bits of the literal addr9 is moved into the program
counter.

Coding: 101k kkkk kkkk GOTO addr9

Example: The following instruction is executed:

jmp main_loop

The program counter now holds the value main_loop, from which
address execution will proceed.

Page 148 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

JMP PC +W
Jump to PC+W.

Words: 1 Cycles: 2 Affects: C, DC, Z

Operation: W+1 is added into the program counter. The 9th bit of the program
counter is always cleared to 0, so the jump destination will be in the
first 256 words of any 512-word page. This instruction is useful for
jumping into lookup tables comprised of RETW data, or jumping to
particular routines. The flags are set as they would be by an ADD
instruction.

Coding: 0001 111f ffff ADDWF 2,1

Example: The program counter holds 18h and W holds 10h. The following
instruction is executed:

jmp pc+w

The program counter now holds 29h (18h+10h+1h), from which
address execution will proceed.

JMP W
Jump to W.

Words: 1 Cycles: 2 Affects: none

Operation: W is moved into the program counter. The 9th bit of the program
counter is always cleared to 0, so the jump destination will be in the
first 256 words of any 512-word page. This instruction is useful for
jumping into lookup tables comprised of RETW data, or jumping to
particular routines.

Coding: 0000 001f ffff MOVWF 2

Example: W holds 8h. The following instruction is executed:

jmp w

The program counter now holds 8h, from which address execution
will proceed.

Page 149 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

JNB bit,addr9
Jump if not bit.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: If bit reads 0, a jump to addr9 is executed.

Coding: 0111 bbbf ffff BTFSS bit
101k kkkk kkkk GOTO addr9

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

JNC addr9
Jump if not carry.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: If C is 0, a jump to addr9 is executed.

Coding: 0111 0000 0011 BTFSS 3,0
101k kkkk kkkk GOTO addr9

Page 150 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

JNZ addr9
Jump if not zero.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

peration: If Z is 0, a jump to addr9 is executed.

Coding: 0111 0100 0011 BTFSS 3,2
101k kkkk kkkk GOTO addr9

JZ addr9
Jump if zero.

Words: 2 Cycles: 2 or 3 (jump) Affects: none

Operation: If Z is 1, a jump to addr9 is executed.

Coding: 0110 0100 0011 BTFSC 3,2
101k kkkk kkkk GOTO addr9

Page 151 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

LCALL* addr11
Long call.

Words: 1-3 Cycles: 2-4 Affects: none

Operation: Depending on the device size, from zero to two BCF/BSF instructions
will be assembled to point the page pre-select bits to addr11’s
page. The bit set/clear instructions are followed by a CALL to
addr11. This instruction is only useful for the PIC16C56 and ’57.

Coding: (010x 1xx0 0011 BCF/BSF 3,x)
(010x 1xx0 0011 BCF/BSF 3,x)
1000 kkkk kkkk CALL addr11

Note: Please note that LCALL does not set the page select bits upon
return to the calling routine. Therefore, you should set these bits
upon returning. This can easily be done using LSET $, which sets
the page select bits to the current page.

LJMP* addr11
Long jump.

Words: 1-3 Cycles: 2-4 Affects: none

Operation: Depending on the device size, from zero to two BCF/BSF instructions
will be assembled to point the page pre-select bits to addr11’s
page. The bit set/clear instructions are followed by a jump to
addr11. This instruction is only useful for the PIC16C56 and ’57.

Coding: (010x 1xx0 0011 BCF/BSF 3,x)
(010x 1xx0 0011 BCF/BSF 3,x)
101k kkkk kkkk GOTO addr11

* This instruction is not available in PASMX.

* This instruction is not available in PASMX.

Page 152 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

LSET* addr11
Long set.

Words: 0-2 Cycles: 0-2 Affects: none

Operation: Depending on the device size, from zero to two BCF/BSF instructions
will be assembled to point the page pre-select bits to addr11’s
page. This instruction is only useful for the PIC16C56 and ’57.

Coding: (010x 1xx0 0011 BCF/BSF 3,x)
(010x 1xx0 0011 BCF/BSF 3,x)

MOV fr,#literal
Move literal into fr.

Words: 2 Cycles: 2 Affects: none

Operation: Literal is moved into fr via W.

Coding: 1100 kkkk kkkk MOVLW literal
0000 001f ffff MOVWF fr

* This instruction is not available in PASMX.

Page 153 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Move fr2 into fr1.

Words: 2 Cycles: 2 Affects: Z

Operation: Fr2 is moved into fr1 via W. Z will be set to 1 if the value moved was
0, otherwise Z will be cleared to 0.

Coding: 0010 000f ffff MOVF fr2,0
0000 001f ffff MOVWF fr1

MOV fr1,fr2

Move W into fr.

Words: 1 Cycles: 1 Affects: none

Operation: W is moved into fr.

Coding: 0000 001f ffff MOVWF fr

MOV fr,W

Page 154 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOV OPTION,#literal
Move literal into OPTION.

Words: 2 Cycles: 2 Affects: none

Operation: Literal is moved into OPTION via W.

Coding: 1100 kkkk kkkk MOVLW literal
0000 0000 0010 OPTION

Note: When using any of the newer PICs (16C64, 16C71, 16C84,...), you
must be in the proper bank (usually bank 1) for this instruction to
function correctly. If your program is not in the proper bank, another
register (not OPTION) will be affected.

MOV OPTION,fr
Move fr into OPTION.

Words: 2 Cycles: 2 Affects: Z

Operation: Fr is moved into OPTION via W. Z will be set to 1 if the value moved
was 0, otherwise Z will be cleared to 0.

Coding: 0010 000f ffff MOVF fr,0
0000 0000 0010 OPTION

Note: When using any of the newer PICs (16C64, 16C71, 16C84,...), you
must be in the proper bank (usually bank 1) for this instruction to
function correctly. If your program is not in the proper bank, another
register (not OPTION) will be affected.

Page 155 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOV OPTION,W
Move W into OPTION.

Words: 1 Cycles: 1 Affects: none

Operation: W is moved into OPTION.

Coding: 0000 0000 0010 OPTION

Note: When using any of the newer PICs (16C64, 16C71, 16C84,...), you
must be in the proper bank (usually bank 1) for this instruction to
function correctly. If your program is not in the proper bank, another
register (not OPTION) will be affected.

MOV !port_fr,#literal
Move literal into port_fr’s I/O control register.

Words: 2 Cycles: 2 Affects: none

Operation: Literal is moved into the I/O control register of port_fr via W. A “1”
bit in W disables the corresponding port pin’s output buffer,
allowing input use, while a “0” bit enables the output buffer for high
or low output. Port_fr must be 5, 6, or 7.

Coding: 1100 kkkk kkkk MOVLW literal
0000 0000 0fff TRIS port_fr

Page 156 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOV !port_fr,fr
Move fr into port_fr’s I/O control register.

Words: 2 Cycles: 2 Affects: Z

Operation: Fr is moved into the I/O control register of port_fr via W. A “1” bit in
W disables the corresponding port pin’s output buffer, allowing
input use, while a “0” bit enables the output buffer for high or low
output. Z will be set to 1 if the value moved was 0, otherwise Z will
be cleared to 0. Port_fr must be 5, 6, or 7.

Coding: 0010 000f ffff MOVF fr,0
0000 0000 0fff TRIS port_fr

MOV !port_fr,W
Move W into port_fr’s I/O control register.

Words: 1 Cycles: 1 Affects: none

Operation: W is moved into the I/O control register of port_fr. A “1” bit in W
disables the corresponding port pin’s output buffer, allowing input
use, while a “0” bit enables the output buffer for high or low output.
Port_fr must be 5, 6, or 7.

Coding: 0000 0000 0fff TRIS port_fr

Page 157 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOV W,#literal
Move literal into W.

Words: 1 Cycles: 1 Affects: none

Operation: Literal is moved into W.

Coding: 1100 kkkk kkkk MOVLW literal

MOV W,fr
Move fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is moved into W. Z will be set to 1 if the value moved was 0,
otherwise Z will cleared to 0.

Coding: 0010 000f ffff MOVF fr,0

Page 158 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Move not fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: The one’s complement of fr is moved into W. Z will be set to 1 if the
result was 0, otherwise Z will cleared to 0.

Coding: 0010 010f ffff COMF fr,0

MOV W,/fr

Move fr-W into W.

Words: 1 Cycles: 1 Affects: C, DC, Z

Operation: W is subtracted from fr and the result is stored in W. C will be
cleared to 0 if an underflow occurred, otherwise C will be set to 1.
DC will be cleared or set depending on whether or not an underflow
occurred in the least-siginificant nibble. Z will be set to 1 if the result
was 0, otherwise Z will be cleared to 0.

Coding: 0000 100f ffff SUBWF fr,0

MOV W,fr-W

Page 159 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOV W,++fr
Move the incremented value of fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: The incremented value of fr is moved into W. Z will be set to 1 if the
result was 0, otherwise Z will be cleared to 0.

Coding: 0010 100f ffff INCF fr,0

MOV W,--fr
Move the decremented value of fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: The decremented value of fr is moved into W. Z will be set to 1 if the
result was 0, otherwise Z will be cleared to 0.

Coding: 0000 110f ffff DECF fr,0

Page 160 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Move the left-rotated value of fr into W.

Words: 1 Cycles: 1 Affects: C

Operation: The left-rotated value of fr is moved into W. On entry, C must hold
the value to be shifted into the least-significant bit of the fr value. On
exit, C will hold the previous most-significant bit of the fr value.

Coding: 0011 010f ffff RLF fr,0

MOV W,<<fr

MOV W,>>fr
Move the right-rotated value of fr into W.

Words: 1 Cycles: 1 Affects: C

Operation: The right-rotated value of fr is moved into W. On entry, C must hold
the value to be shifted into the most-significant bit of the fr value.
On exit, C will hold the previous least-significant bit of the fr value.

Coding: 0011 000f ffff RRF fr,0

Page 161 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOV W,<>fr
Move the nibble-swapped value of fr into W.

Words: 1 Cycles: 1 Affects: none

Operation: The nibble-swapped value of fr is moved into W.

Coding: 0011 100f ffff SWAPF fr,0

MOVB bit1,bit2
Move bit2 to bit1.

Words: 4 Cycles: 4 Affects: none

Operation: Bit2 is moved to bit1.

Coding: 0111 bbbf ffff BTFSS bit2
0100 bbbf ffff BCF bit1
0110 bbbf ffff BTFSC bit2
0101 bbbf ffff BSF bit1

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

Page 162 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Move not bit2 to bit1.

Words: 4 Cycles: 4 Affects: none

Operation: The complement of bit2 is moved to bit1.

Coding: 0110 bbbf ffff BTFSC bit2
0100 bbbf ffff BCF bit1
0111 bbbf ffff BTFSS bit2
0101 bbbf ffff BSF bit1

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

MOVB bit1,/bit2

MOVSZ W,++fr
Move the incremented value of fr into W and skip if zero.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: The incremented value of fr is moved into W. The next instruction
word will be skipped if the result was 0.

Coding: 0011 110f ffff INCFSZ fr,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, MOVSZ may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following MOVSZ is a single-word instruction.

Page 163 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOVSZ W,--fr
Move the decremented value of fr into W and skip if zero.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: The decremented value of fr is moved into W. The next instruction
word will be skipped if the result was 0.

Coding: 0010 110f ffff DECFSZ fr,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, MOVSZ may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following MOVSZ is a single-word instruction.

NEG fr
Negate fr.

Words: 2 Cycles: 2 Affects: Z

Operation: Fr is converted into its two’s complement value. Z will be set to 1
if the result was 0, otherwise Z will be cleared to 0.

Coding: 0010 011f ffff COMF fr,1
0010 101f ffff INCF fr,1

Page 164 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

NOP
No operation.

Words: 1 Cycles: 1 Affects: none

Operation: none

Coding: 0000 0000 0000 NOP

NOT fr
Not fr.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is converted into its one’s complement value. Z will be set to 1
if the result was 0, otherwise Z will be cleared to 0.

Coding: 0010 011f ffff COMF fr,1

Page 165 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

NOT W
Not W.

Words: 1 Cycles: 1 Affects: Z

Operation: W is converted into its one’s complement value. Z will be set to 1
if the result was 0, otherwise Z will be cleared to 0.

Coding: 1111 1111 1111 XORLW 0FFh

O R fr,#literal
OR literal into fr.

Words: 2 Cycles: 2 Affects: Z

Operation: Literal is OR’d into fr via W. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 1100 kkkk kkkk MOVLW literal
0001 001f ffff IORWF fr,1

Page 166 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

OR W into fr.

Words: 1 Cycles: 1 Affects: Z

Operation: W is OR’d into fr. Z will be set to 1 if the result was 0, otherwise Z
will be cleared to 0.

Coding: 0001 001f ffff IORWF fr,1

O R fr,W

OR fr2 into fr1.

Words: 2 Cycles: 2 Affects: Z

Operation: Fr2 is OR’d into fr1 via W. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 0010 000f ffff MOVF fr2,0
0001 001f ffff IORWF fr1,1

O R fr1,fr2

Page 167 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

O R W,#literal
OR literal into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Literal is OR’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 1101 kkkk kkkk IORLW literal

O R W,fr
OR fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is OR’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 0001 000f ffff IORWF fr,0

Page 168 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

RET
Return from subroutine.

Words: 1 Cycles: 2 Affects: none

Operation: The next stack value is moved into the program counter. W is
cleared to 0.

Coding: 1000 0000 0000 RETLW 0

RET W literal1,literal2,...
Assemble RET’s which load W with literal data.

Words: ? Cycles: 2 per RETLW Affects: none

Operation: A list of RET’s with literal data in the W area is assembled, which
can be accessed by JMP PC+W or JMP W instructions. This is
useful for lookup tables.

Coding: 1000 kkkk kkkk RETLW literal1
(1000 kkkk kkkk RETLW literal2)
(1000 kkkk kkkk RETLW ...)

Examples: jmp pc+w ;Jump to byte at
;location pc+w

retw 00100011b ;Return with w
retw 00h,01h,02h,03h ;holding
retw ’Enter cycle count’ ;appropriate value

Page 169 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

RL fr
Rotate left fr.

Words: 1 Cycles: 1 Affects: C

Operation: Fr is rotated left. On entry, C must hold the value to be shifted into
the least-significant bit of the fr value. On exit, C will hold the
previous most-significant bit of the fr value.

Coding: 0011 011f ffff RLF fr,1

R R fr
Rotate right fr.

Words: 1 Cycles: 1 Affects: C

Operation: Fr is rotated right. On entry, C must hold the value to be shifted into
the most-significant bit of the fr value. On exit, C will hold the
previous least-significant bit of the fr value.

Coding: 0011 001f ffff RRF fr,1

Page 170 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Skip if bit.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: If bit reads 1, the following instruction word is skipped.

Coding: 0111 bbbf ffff BTFSS bit

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SB may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SB is a single-word instruction.

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

SB bit

S C
Skip if carry.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: If C is 1, the following instruction word is skipped.

Coding: 0111 0000 0011 BTFSS 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SC may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SC is a single-word instruction.

Page 171 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

SETB bit
Set bit.

Words: 1 Cycles: 1 Affects: none

Operation: Bit is set to 1.

Coding: 0101 bbbf ffff BSF bit

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

SKIP
Skip.

Words: 1 Cycles: 2 Affects: none

Operation: The following instruction word is skipped.

Coding: 0111 1110 0100 BTFSS 4,7

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SKIP may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SKIP is a single-word instruction.

Page 172 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

SLEEP
Enter sleep mode.

Words: 1 Cycles: 1 Affects: TO, PD

Operation: The watchdog timer is cleared and the oscillator is stopped. TO is
set to 1. PD is cleared to 0.

Coding: 0000 0000 0011 SLEEP

SNB bit
Skip if not bit.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: If bit reads 0, the following instruction word is skipped.

Coding: 0110 bbbf ffff BTFSC bit

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SNB may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SNB is a single-word instruction.

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

Page 173 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

SNC
Skip if not carry.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: If C is 0, the following instruction word is skipped.

Coding: 0110 0000 0011 BTFSC 3,0

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SNC may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SNC is a single-word instruction.

SNZ
Skip if not zero.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: If Z is 0, the following instruction word is skipped.

Coding: 0110 0100 0011 BTFSC 3,2

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SNZ may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SNZ is a single-word instruction.

Page 174 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

STC
Set carry.

Words: 1 Cycles: 1 Affects: C

Operation: C is set to 1.

Coding: 0101 0000 0011 BSF 3,0

STZ
Set zero.

Words: 1 Cycles: 1 Affects: Z

Operation: Z is set to 1.

Coding: 0101 0100 0011 BSF 3,2

Page 175 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

SUB fr,#literal
Subtract literal from fr.

Words: 2 Cycles: 2 Affects: C, DC, Z

Operation: Literal is subtracted from fr via W. C will be cleared to 0 if an
underflow occurred, otherwise C will be set to 1. DC will be cleared
or set, depending on whether or not an underflow occurred in the
least-siginificant nibble. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 1100 kkkk kkkk MOVLW literal
0000 101f ffff SUBWF fr,1

SUB fr1,fr2
Subtract fr2 from fr1.

Words: 2 Cycles: 2 Affects: C, DC, Z

Operation: Fr2 is subtracted from fr1 via W. C will be cleared to 0 if an underflow
occurred, otherwise C will be set to 1. DC will be cleared or set,
depending on whether or not an underflow occurred in the least-
siginificant nibble. Z will be set to 1 if the result was 0, otherwise Z
will be cleared to 0.

Coding: 0010 000f ffff MOVF fr2,0
0000 101f ffff SUBWF fr1,1

Page 176 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Subtract W from fr.

Words: 1 Cycles: 1 Affects: C, DC, Z

Operation: W is subtracted from fr. C will be cleared to 0 if an underflow
occurred, otherwise C will be set to 1. DC will be cleared or set,
depending on whether or not an underflow occurred in the least-
siginificant nibble. Z will be set to 1 if the result was 0, otherwise Z
will be cleared to 0.

Coding: 0000 101f ffff SUBWF fr,1

SUB fr,W

SUBB* fr,bit
Subtract bit from fr.

Words: 2 Cycles: 2 Affects: Z

Operation: If bit reads 0, fr is decremented. If fr was decremented, Z will be set
to 1 if the result was 0, else Z will be cleared to 0. This instruction
is useful for subtracting the carry from the upper byte of a double-
byte value after the lower byte has been subtracted.

Coding: 0111 0000 0011 BTFSS 3,0
0000 111f ffff DECF fr,1

Note: The Parallax assemblers define a bit as port.bitposition, as in the
following examples:

RA.3 = bit 3 of port A
PortB.0 = bit 0 of port B

* This instruction is not available in PASMX.

Page 177 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

SWAP fr
Swap nibbles in fr.

Words: 1 Cycles: 1 Affects: none

Operation: The high- and low-order nibbles in fr are swapped.

Coding: 0011 101f ffff SWAPF fr,1

S Z
Skip if zero.

Words: 1 Cycles: 1 or 2 (skip) Affects: none

Operation: If Z is 1, the following instruction word is skipped.

Coding: 0111 0100 0011 BTFSS 3,2

Note: Only one word is skipped by this instruction. Since some instructions
are multi-word, SZ may jump into the middle of them, causing
unexpected results. Please make sure that any instruction
following SZ is a single-word instruction.

Page 178 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

TEST fr
Test fr for zero.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is read and copied back to itself. Z will be set to 1 if the value
moved was 0, otherwise Z will be cleared to 0.

Coding: 0010 001f ffff MOVF fr,1

TEST W
Test W for zero.

Words: 1 Cycles: 1 Affects: Z

Operation: Z will be set to 1 if W is 0, otherwise Z will be cleared to 0.

Coding: 1101 0000 0000 IORLW 0

Page 179 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

XOR fr,#literal
XOR literal into fr.

Words: 2 Cycles: 2 Affects: Z

Operation: Literal is XOR’d into fr via W. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 1100 kkkk kkkk MOVLW literal
0001 101f ffff XORWF fr,1

XOR fr1,fr2
XOR fr2 into fr1.

Words: 2 Cycles: 2 Affects: Z

Operation: Fr2 is XOR’d into fr1 via W. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 0010 000f ffff MOVF fr2,0
0001 101f ffff XORWF fr1,1

Page 180 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

XOR fr,W
XOR W into fr.

Words: 1 Cycles: 1 Affects: Z

Operation: W is XOR’d into fr. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 0001 101f ffff XORWF fr,1

XOR literal into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Literal is XOR’d into W. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 1111 kkkk kkkk XORLW literal

XOR W,#literal

Page 181 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

XOR W,fr
XOR fr into W.

Words: 1 Cycles: 1 Affects: Z

Operation: Fr is XOR’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 0001 100f ffff XORWF fr,0

Page 182 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

PIC16Cxx Instruction Set

Microchip Version

Page 184 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 185 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16Cxx Instruction Set

Microchip Instruction Set

ADDWF fr,d
ADDWF fr
ADDWF fr,W
ANDLW lit
ANDWF fr,d
ANDWF fr
ANDWF fr,W
BCF fr,b
BCF bit
BSF fr,b
BSF bit
BTFSC fr,b
BTFSC bit
BTFSS fr,b
BTFSS bit
CALL addr8
CLRF fr
CLRW
CLRWDT
COMF fr,d
COMF fr
COMF fr,W
DECF fr,d
DECF fr
DECF fr,W
DECFSZ fr,d
DECFSZ fr
DECFSZ fr,W
GOTO addr9
INCF fr,d
INCF fr
INCF fr,W
INCFSZ fr,d
INCFSZ fr
INCFSZ fr,W
IORLW lit
IORWF fr,d
IORWF fr
IORWF fr,W

MOVF fr,d
MOVF fr
MOVF fr,W
MOVLW lit
MOVWF fr
NOP
OPTION
RETLW lit
RETLW
RLF fr,d
RLF fr
RLF fr,W
RRF fr,d
RRF fr
RRF fr,W
SLEEP
SUBWF fr,d
SUBWF fr
SUBWF fr,W
SWAPF fr,d
SWAPF fr
SWAPF fr,W
TRIS port_fr
TRISA
TRISB
TRISC
XORLW lit
XORWF fr,d
XORWF fr
XORWF fr,W

Page 186 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 187 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

ADDWF fr,d
Add W and fr.

Cycles: 1 Affects: C, DC, Z

Operation: W is added to fr and the result is stored according to d. If d=0 then
then W will hold the result. If d=1 then fr will hold the result. C will
be set to 1 if an overflow occurred, otherwise C will be cleared to
0. DC will be set or cleared depending on whether or not an
overflow occurred in the least-siginificant nibble. Z will be set to 1
if the result was 0, otherwise Z will be cleared to 0.

Coding: 0001 11df ffff

ANDLW literal
AND literal into W.

Cycles: 1 Affects: Z

Operation: Literal is AND’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 1110 kkkk kkkk

Page 188 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

ANDWF fr,d
AND W and fr.

Cycles: 1 Affects: Z

Operation: W is AND’d with fr and the result is stored according to d. If d=0 then
W will hold the result. If d=1 then fr will hold the result. Z will be set
to 1 if the result was 0, otherwise Z will be cleared to 0.

Coding: 0001 01df ffff

BCF fr,bit
Bit clear fr.

Cycles: 1 Affects: none

Operation: The bit addressed by the operand is cleared to 0.

Coding: 0100 bbbf ffff

Page 189 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BSF fr,bit
Bit set fr.

Cycles: 1 Affects: none

Operation: The bit addressed by the operand is set to 1.

Coding: 0101 bbbf ffff

BTFSC fr,bit
Bit test fr and skip if clear.

Cycles: 1 or 2 (skip) Affects: none

Operation: If the bit addressed by the operand reads 0, the next instruction
word will be skipped by internally cancelling it into a NOP.

Coding: 0110 bbbf ffff

Page 190 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BTFSS fr,bit
Bit test fr and skip if set.

Cycles: 1 or 2 (skip) Affects: none

Operation: If the bit addressed by the operand reads 1, the next instruction
word will be skipped by internally cancelling it into a NOP.

Coding: 0111 bbbf ffff

CALL addr8
Call subroutine.

Cycles: 2 Affects: none

Operation: The next instruction address is pushed onto the stack and addr8 is
moved to the program counter. The ninth bit of the program counter
will be cleared to 0. Therefore, calls are only allowed to the first half
of any 512-word page, although the CALL instruction can be
anywhere.

Coding: 1001 kkkk kkkk

Page 191 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CLRF fr
Clear fr.

Cycles: 1 Affects: Z

Operation: Fr is cleared to 0 and Z is set to 1.

Coding: 0000 011f ffff

CLRW
Clear W.

Cycles: 1 Affects: Z

Operation: W is cleared to 0 and Z is set to 1.

Coding: 0000 0100 0000

Page 192 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CLRWDT
Clear the watchdog timer.

Cycles: 1 Affects: TO, PD

Operation: The watchdog timer is cleared, along with the prescaler, if assigned.
TO and PD are set to 1.

Coding: 0000 0000 0100

COM F fr,d
Complement fr.

Cycles: 1 Affects: Z

Operation: The one’s complement of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. Z will be set to 1 if the result was 0, otherwise Z will
be cleared to 0.

Coding: 0010 01df ffff

Page 193 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

DEC F fr,d
Decrement fr.

Cycles: 1 Affects: Z

Operation: The decremented value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. Z will be set to 1 if the result was 0, otherwise Z will
be cleared to 0.

Coding: 0000 11df ffff

DECFSZ fr,d
Decrement fr and skip if zero.

Cycles: 1 or 2 (skip) Affects: none

Operation: The decremented value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. If the result was 0, the next instruction word will be
skipped by internally cancelling it into a NOP.

Coding: 0010 11df ffff

Page 194 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

GOTO addr9
Go to address.

Cycles: 2 Affects: none

Operation: Addr9 is moved to the program counter.

Coding: 101k kkkk kkkk

IN CF fr,d
Increment fr.

Cycles: 1 Affects: Z

Operation: The incremented value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. Z will be set to 1 if the result was 0, otherwise Z will
be cleared to 0.

Coding: 0010 10df ffff

Page 195 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

INCFSZ fr,d
Increment fr and skip if zero.

Cycles: 1 or 2 (skip) Affects: none

Operation: The incremented value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. If the result was 0, the next instruction word will be
skipped by internally cancelling it into a NOP.

Coding: 0011 11df ffff

IORLW literal
OR literal into W.

Cycles: 1 Affects: Z

Operation: Literal is OR’d into W. Z will be set to 1 if the result was 0, otherwise
Z will be cleared to 0.

Coding: 1101 kkkk kkkk

Page 196 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

IORW F fr,d
Inclusive OR W and fr.

Cycles: 1 Affects: Z

Operation: W is OR’d with fr and the result is stored according to d. If d=0 then
W will hold the result. If d=1 then fr will hold the result. Z will be set
to 1 if the result was 0, otherwise Z will be cleared to 0.

Coding: 0001 00df ffff

MOVF fr,d
Move fr.

Cycles: 1 Affects: Z

Operation: If d=0 then fr will be moved toW. If d=1 then fr will be moved to itself.
Z will be set to 1 if fr was 0, otherwise Z will be cleared to 0.

Coding: 0010 00df ffff

Page 197 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

MOVLW literal
Move literal into W.

Cycles: 1 Affects: none

Operation: Literal is moved into W.

Coding: 1100 kkkk kkkk

MOVWF fr
Move W to fr.

Cycles: 1 Affects: none

Operation: W is moved into fr.

Coding: 0000 001f ffff

Page 198 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

NOP
No operation.

Cycles: 1 Affects: none

Operation: none

Coding: 0000 0000 0000

OPTION
Move W into OPTION.

Cycles: 1 Affects: none

Operation: W is moved into the OPTION register.

Coding: 0000 0000 0010

Page 199 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

RETLW literal
Return from subroutine and move literal into W.

Cycles: 2 Affects: none

Operation: Literal is moved into W and the next stack value is moved into the
program counter.

Coding: 1000 kkkk kkkk

RLF fr,d
Rotate left fr.

Cycles: 1 Affects: C

Operation: The left-rotated value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. On entry, C must hold the value to be shifted into
the least-significant bit of the fr value. On exit, C will hold the
previous most-significant bit of the fr value.

Coding: 0011 01df ffff

Page 200 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

RRF fr,d
Rotate right fr.

Cycles: 1 Affects: C

Operation: The right-rotated value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result. On entry, C must hold the value to be shifted into
the most-significant bit of the fr value. On exit, C will hold the
previous least-significant bit of the fr value.

Coding: 0011 00df ffff

SLEEP
Enter sleep mode.

Cycles: 1 Affects: TO, PD

Operation: The watchdog timer is cleared and the oscillator is stopped. PD is
cleared to 0. TO is set to 1.

Coding: 0000 0000 0011

Page 201 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

SUBWF fr,d
Subtract W from fr.

Cycles: 1 Affects: C, DC, Z

Operation: W is subtracted from fr and the result is stored according to d. If d=0
then W will hold the result. If d=1 then fr will hold the result. C will
be cleared to 0 if an underflow occurred, otherwise C will be set to
1. DC will be cleared or set depending on whether or not an
underflow occurred in the least-siginificant nibble. Z will be set to
1 if the result was 0, otherwise Z will be cleared to 0.

Coding: 0000 10df ffff

SWAPF fr,d
Swap fr’s high- and low-order nibbles.

Cycles: 1 Affects: none

Operation: The nibble-swapped value of fr is computed and the result is stored
according to d. If d=0 then W will hold the result. If d=1 then fr will
hold the result.

Coding: 0011 10df ffff

Page 202 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

TRIS port_fr
Move W into port_fr’s I/O control register.

Cycles: 1 Affects: none

Operation: W is moved into the I/O control register of port_fr. A “1” bit in W
disables the corresponding port pin’s output buffer, allowing input
use, while a “0” bit enables the output buffer for high or low output.
Port_fr must be 5, 6, or 7.

Coding: 0000 0000 0fff

XORLW literal
XOR literal into W.

Cycles: 1 Affects: Z

Operation: Literal is XOR’d into W. Z will be set to 1 if the result was 0,
otherwise Z will be cleared to 0.

Coding: 1111 kkkk kkkk

Page 203 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

XORW F fr,d
XOR W and fr.

Cycles: 1 Affects: Z

Operation: W is XOR’d with fr and the result is stored according to d. If d=0 then
W will hold the result. If d=1 then fr will hold the result. Z will be set
to 1 if the result was 0, otherwise Z will be cleared to 0.

Coding: 0001 10df ffff

Page 204 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 205 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PIC16C5x Pre-Defined Symbols

The following text is a copy of the disk file INST.TXT. This file may be
found in the PIC16C5x directory on the PIC Tools diskette. The disk
version may be more up-to-date than this copy, but this is provided as
a quick reference for common symbols used by the PASM assembler.

Symbols used with DEVICE directive - choose one from each group - DEVICE
PIC16C54,XT_OSC,WDT_OFF,PROTECT_OFF

PIC16C54 = 0 Devices
PIC16C55 = 1
PIC16C56 = 2
PIC16C57 = 3
PIC16C58 = 4

LP_OSC = 11000000b Oscillators
XT_OSC = 11000001b
HS_OSC = 11000010b
RC_OSC = 11000011b

WDT_OFF = 10110000b Watchdog status
WDT_ON = 10110100b

PROTECT_ON = 01110000b Code-protect status
PROTECT_OFF = 01111000b

(Special file register equates)

INDIRECT = 0 Indirect data addressing
RTCC = 1 Real time clock/counter register
PC = 2 Program counter
STATUS = 3 Status word register
FSR = 4 File select register
RA = 5 Port A I/O register
RB = 6 Port B I/O register
RC = 7 Port C I/O register

(Status register bit equates)

C = STATUS.0 Carry bit
DC = STATUS.1 Digit carry bit
Z = STATUS.2 Zero bit
PD = STATUS.3 Power down bit
TO = STATUS.4 Time out bit
PA0 = STATUS.5 Page address bit 0
PA1 = STATUS.6 Page address bit 1
PA2 = STATUS.7 Page address bit 2

Page 206 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

The following text is a copy of the disk file INSTX.TXT. This file may
be found in the PIC16Cxx directory on the PIC Tools diskette. The disk
version may be more up-to-date than this copy, but this is provided as
a quick reference for common symbols used by the PASMX assembler.

Dynamic Equates (always reflect current values)

$ = Current origin
% = Current EEPROM origin (PIC16C84 only)

DEVICE directive equates - establish device and fuse settings

Example: DEVICE PIC16C71,XT_OSC,WDT_ON,PWRT_OFF,PROTECT_ON

PIC16C71 = 0000h Device (select one)
PIC16C84 = 0100h
PIC16C64 = 0200h
PIC16C74 = 0300h

LP_OSC = 001Ch Oscillator (select one)
XT_OSC = 011Ch
HS_OSC = 021Ch
RC_OSC = 031Ch

WDT_OFF = 001Bh Watchdog timer (select one)
WDT_ON = 041Bh

PWRT_OFF = 0017h Power-up timer (select one)
PWRT_ON = 0817h

PROTECT_ON = 000Fh Code protection (select one)
PROTECT_OFF = 100Fh

PIC16C71 Equates - enabled by DEVICE PIC16C71

page
INDIRECT = 00h 0 Indirect addressing register

RTCC = 01h 0 Real time clock/counter register

PCL = 02h 0 Program counter low-byte register

STATUS = 03h 0 Status register
C = STATUS.0 0 Carry bit
DC = STATUS.1 0 Digit carry bit
Z = STATUS.2 0 Zero bit
PD = STATUS.3 0 Power down bit
TO = STATUS.4 0 Time out bit
RP0 = STATUS.5 0 Register page bit 0
RP1 = STATUS.6 0 Register page bit 1
IRP = STATUS.7 0 Indirect register page bit

FSR = 04h 0 File select register

PORTA = 05h 0 RA i/o register
RA = 05h 0 RA i/o register

PORTB = 06h 0 RB i/o register
RB = 06h 0 RB i/o register

ADCON0 = 08h 0 Analog to Digitial Converter control register 0
ADON = ADCON0.0 0 ADC power control bit
ADIF = ADCON0.1 0 ADC interrupt flag bit

PIC16Cxx Pre-Defined Symbols

Page 207 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

GO_DONE = ADCON0.2 0 ADC go command / done flag bit
CHS0 = ADCON0.3 0 ADC channel select bit 0
CHS1 = ADCON0.4 0 ADC channel select bit 1
ADCS0 = ADCON0.6 0 ADC clock select bit 0
ADCS1 = ADCON0.7 0 ADC clock select bit 1

ADRES = 09h 0 Analog to Digital Converter result register

PCLATH = 0Ah 0 Program counter high-byte register

INTCON = 0Bh 0 Interrupt control register
RBIF = INTCON.0 0 RB4-RB7 change interrupt flag bit
INTF = INTCON.1 0 RB0/INT interrupt flag bit
RTIF = INTCON.2 0 RTCC overflow interrupt flag bit
RBIE = INTCON.3 0 RB4-RB7 change interrupt enable bit
INTE = INTCON.4 0 RB0/INT interrupt enable bit
RTIE = INTCON.5 0 RTCC overflow interrupt enable bit
ADIE = INTCON.6 0 ADC interrupt enable bit
GIE = INTCON.7 0 Global interrupt enable bit

OPTION = 01h 1 OPTION register
PS0 = OPTION.0 1 Prescaler bit 0
PS1 = OPTION.1 1 Prescaler bit 1
PS2 = OPTION.2 1 Prescaler bit 2
PSA = OPTION.3 1 Prescaler assignment bit
RTE = OPTION.4 1 RTCC signal edge bit
RTS = OPTION.5 1 RTCC signal source bit
INTEDG = OPTION.6 1 RB0/INT edge select bit
RBPU = OPTION.7 1 RB weak pull-up enable bit

TRISA = 05h 1 RA tristate control register

TRISB = 06h 1 RB tristate control register

ADCON1 = 08h 1 Analog to Digitial Converter control register 1
PCFG0 = ADCON1.0 1 RA port configuration bit 0
PCFG1 = ADCON1.1 1 RA port configuration bit 1

PIC16C84 Equates - enabled by DEVICE PIC16C84

page
IND0 = 00h 0 Indirect addressing register
INDIRECT = 00h 0 Indirect addressing register

RTCC = 01h 0 Real time clock/counter register

PCL = 02h 0 Program counter low-byte register

STATUS = 03h 0 Status register
C = STATUS.0 0 Carry bit
DC = STATUS.1 0 Digit carry bit
Z = STATUS.2 0 Zero bit
PD = STATUS.3 0 Power down bit
TO = STATUS.4 0 Time out bit
RP0 = STATUS.5 0 Register page bit 0
RP1 = STATUS.6 0 Register page bit 1
IRP = STATUS.7 0 Indirect register page bit

FSR = 04h 0 File select register

PORTA = 05h 0 RA i/o register
RA = 05h 0 RA i/o register

PORTB = 06h 0 RB i/o register
RB = 06h 0 RB i/o register

PIC16Cxx Pre-Defined Symbols

Page 208 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

EEDATA = 08h 0 EEPROM data register

EEADR = 09h 0 EEPROM address register

PCLATH = 0Ah 0 Program counter high-byte register

INTCON = 0Bh 0 Interrupt control register
RBIF = INTCON.0 0 RB4-RB7 change interrupt flag bit
INTF = INTCON.1 0 RB0/INT interrupt flag bit
RTIF = INTCON.2 0 RTCC overflow interrupt flag bit
RBIE = INTCON.3 0 RB4-RB7 change interrupt enable bit
INTE = INTCON.4 0 RB0/INT interrupt enable bit
RTIE = INTCON.5 0 RTCC overflow interrupt enable bit
EEIE = INTCON.6 0 EEPROM interrupt enable bit
GIE = INTCON.7 0 Global interrupt enable bit

OPTION = 01h 1 OPTION register
PS0 = OPTION.0 1 Prescaler bit 0
PS1 = OPTION.1 1 Prescaler bit 1
PS2 = OPTION.2 1 Prescaler bit 2
PSA = OPTION.3 1 Prescaler assignment bit
RTE = OPTION.4 1 RTCC signal edge bit
RTS = OPTION.5 1 RTCC signal source bit
INTEDG = OPTION.6 1 RB0/INT edge select bit
RBPU = OPTION.7 1 RB weak pull-up enable bit

TRISA = 05h 1 RA tristate control register

TRISB = 06h 1 RB tristate control register

EECON1 = 08h 1 EEPROM control register 1
RD = EECON1.0 1 EEPROM read control bit
WR = EECON1.1 1 EEPROM write control bit
WREN = EECON1.2 1 EEPROM write enable bit
WRERR = EECON1.3 1 EEPROM write error flag bit
EEIF = EECON1.4 1 EEPROM interrupt flag bit

EECON2 = 09h 1 EEPROM control register 2

PIC16C64 Equates - enabled by DEVICE PIC16C64

page
INDF = 00h 0 Indirect addressing register
INDIRECT = 00h 0 Indirect addressing register

TMR0 = 01h 0 Timer0 register

PCL = 02h 0 Program counter low-byte register

STATUS = 03h 0 Status register
C = STATUS.0 0 Carry bit
DC = STATUS.1 0 Digit carry bit
Z = STATUS.2 0 Zero bit
PD = STATUS.3 0 Power down bit
TO = STATUS.4 0 Time out bit
RP0 = STATUS.5 0 Register page bit 0
RP1 = STATUS.6 0 Register page bit 1
IRP = STATUS.7 0 Indirect register page bit

FSR = 04h 0 File select register

PORTA = 05h 0 RA i/o register
RA = 05h 0 RA i/o register

PORTB = 06h 0 RB i/o register
RB = 06h 0 RB i/o register

PIC16Cxx Pre-Defined Symbols

Page 209 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PORTC = 07h 0 RC i/o register
RC = 07h 0 RC i/o register

PORTD = 08h 0 RD i/o register
RD = 08h 0 RD i/o register

PORTE = 09h 0 RE i/o register
RE = 09h 0 RE i/o register

PCLATH = 0Ah 0 Program counter high-byte register

INTCON = 0Bh 0 Interrupt control register
RBIF = INTCON.0 0 RB4-RB7 change interrupt flag bit
INTF = INTCON.1 0 RB0/INT interrupt flag bit
RTIF = INTCON.2 0 RTCC overflow interrupt flag bit
RBIE = INTCON.3 0 RB4-RB7 change interrupt enable bit
INTE = INTCON.4 0 RB0/INT interrupt enable bit
RTIE = INTCON.5 0 RTCC overflow interrupt enable bit
PEIE = INTCON.6 0 Perpiheral interrupt enable bit
GIE = INTCON.7 0 Global interrupt enable bit

PIR1 = 0Ch 0 Peripheral interrupt flags register
TMR1IF = PIR1.0 0 Timer1 interrupt flag bit
TMR2IF = PIR1.1 0 Timer2 interrupt flag bit
CCP1IF = PIR1.2 0 CCP interrupt flag bit
SSPIF = PIR1.3 0 SSP interrupt flag bit
PSPIF = PIR1.7 0 PSP interrupt flag bit

TMR1L = 0Eh 0 Timer1 low byte register

TMR1H = 0Fh 0 Timer1 high byte register

T1CON = 10h 0 Timer1 control register
TMR1ON = T1CON.0 0 Timer1 enable bit
TMR1CS = T1CON.1 0 Timer1 clock select bit
T1INSYNC = T1CON.2 0 Timer1 sync enable bit
T1OSCEN = T1CON.3 0 Timer1 oscillator enable bit
T1CKPS0 = T1CON.4 0 Timer1 clock prescaler select bit0
T1CKPS1 = T1CON.5 0 Timer1 clock prescaler select bit1

TMR2 = 11h 0 Timer2 register

T2CON = 12h 0 Timer2 control register
T2CKPS0 = T2CON.0 0 Timer2 clock prescaler select bit0
T2CKPS1 = T2CON.1 0 Timer2 clock prescaler select bit1
TMR2ON = T2CON.2 0 Timer2 enable bit
TOUTPS0 = T2CON.3 0 Timer2 postscaler select bit0
TOUTPS1 = T2CON.4 0 Timer2 postscaler select bit1
TOUTPS2 = T2CON.5 0 Timer2 postscaler select bit2
TOUTPS3 = T2CON.6 0 Timer2 postscaler select bit3

SSPBUF = 13h 0 Synchronous Serial Port receive/transmit register

SSPCON = 14h 0 Synchronous Serial Port control register
SSPM0 = SSPCON.0 0 SSP mode select bit0
SSPM1 = SSPCON.1 0 SSP mode select bit1
SSPM2 = SSPCON.2 0 SSP mode select bit2
SSPM3 = SSPCON.3 0 SSP mode select bit3
CKP = SSPCON.4 0 SSP clock polarity select bit
SSPEN = SSPCON.5 0 SSP enable bit
SSPOV = SSPCON.6 0 SSP receive overflow flag bit
WCOL = SSPCON.7 0 SSP write collision detect bit

CCPR1L = 15h 0 Capture/Compare/PWM low byte register

CCPR1H = 16h 0 Capture/Compare/PWM high byte register

CCP1CON = 17h 0 Capture/Compare/PWM control register

PIC16Cxx Pre-Defined Symbols

Page 210 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

CCP1M0 = CCP1CON.0 0 CCP mode select bit0
CCP1M1 = CCP1CON.1 0 CCP mode select bit1
CCP1M2 = CCP1CON.2 0 CCP mode select bit2
CCP1M3 = CCP1CON.3 0 CCP mode select bit3
CCP1Y = CCP1CON.4 0 CCP 10-bit PWM low order bit0
CCP1X = CCP1CON.5 0 CCP 10-bit PWM low order bit1

OPTION = 01h 1 OPTION register
PS0 = OPTION.0 1 Prescaler bit 0
PS1 = OPTION.1 1 Prescaler bit 1
PS2 = OPTION.2 1 Prescaler bit 2
PSA = OPTION.3 1 Prescaler assignment bit
RTE = OPTION.4 1 RTCC signal edge bit
RTS = OPTION.5 1 RTCC signal source bit
INTEDG = OPTION.6 1 RB0/INT edge select bit
RBPU = OPTION.7 1 RB weak pull-up enable bit

TRISA = 05h 1 RA tristate control register

TRISB = 06h 1 RB tristate control register

TRISC = 07h 1 RC tristate control register

TRISD = 08h 1 RD tristate control register

TRISE = 09h 1 RE tristate control register
TRISE0 = TRISE.0 1 RE0 tristate control bit
TRISE1 = TRISE.1 1 RE1 tristate control bit
TRISE2 = TRISE.2 1 RE2 tristate control bit
PSPMODE = TRISE.4 1 PSP mode bit
IBOV = TRISE.5 1 PSP input buffer overflow flag
OBF = TRISE.6 1 PSP output buffer full flag
IBF = TRISE.7 1 PSP input buffer full flag

PIE1 = 0Ch 1 Peripheral interrupt enable register
TMR1IE = PIE1.0 1 Timer1 interrupt enable bit
TMR2IE = PIE1.1 1 Timer2 interrupt enable bit
CCP1IE = PIE1.2 1 CCP interrupt enable bit
SSPIE = PIE1.3 1 SSP interrupt enable bit
PSPIE = PIE1.7 1 PSP interrupt enable bit

PCON = 0Eh 1 Power-On-Reset detection register
POR = PCON.1 1 Power-On-Reset flag bit

PR2 = 12h 1 Timer2 period register

SSPADD = 13h 1 Synchronous Serial Port I2C address register

SSPSTAT = 14h 1 Synchronous Serial Port status register
BF = SSPSTAT.0 1 SSP buffer full flag bit
UA = SSPSTAT.1 1 SSP 10-bit I2C update address flag bit
R_W = SSPSTAT.2 1 SSP I2C read/write status bit
S = SSPSTAT.3 1 SSP I2C start flag bit
P = SSPSTAT.4 1 SSP I2C stop flag bit
D_A = SSPSTAT.5 1 SSP I2C data/address flag bit

PIC16C74 Equates - enabled by DEVICE PIC16C74

page
INDF = 00h 0 Indirect addressing register
INDIRECT = 00h 0 Indirect addressing register

TMR0 = 01h 0 Timer0 register

PCL = 02h 0 Program counter low-byte register

PIC16Cxx Pre-Defined Symbols

Page 211 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

STATUS = 03h 0 Status register
C = STATUS.0 0 Carry bit
DC = STATUS.1 0 Digit carry bit
Z = STATUS.2 0 Zero bit
PD = STATUS.3 0 Power down bit
TO = STATUS.4 0 Time out bit
RP0 = STATUS.5 0 Register page bit 0
RP1 = STATUS.6 0 Register page bit 1
IRP = STATUS.7 0 Indirect register page bit

FSR = 04h 0 File select register

PORTA = 05h 0 RA i/o register
RA = 05h 0 RA i/o register

PORTB = 06h 0 RB i/o register
RB = 06h 0 RB i/o register

PORTC = 07h 0 RC i/o register
RC = 07h 0 RC i/o register

PORTD = 08h 0 RD i/o register
RD = 08h 0 RD i/o register

PORTE = 09h 0 RE i/o register
RE = 09h 0 RE i/o register

PCLATH = 0Ah 0 Program counter high-byte register

INTCON = 0Bh 0 Interrupt control register
RBIF = INTCON.0 0 RB4-RB7 change interrupt flag bit
INTF = INTCON.1 0 RB0/INT interrupt flag bit
T0IF = INTCON.2 0 RTCC overflow interrupt flag bit
RBIE = INTCON.3 0 RB4-RB7 change interrupt enable bit
INTE = INTCON.4 0 RB0/INT interrupt enable bit
T0IE = INTCON.5 0 RTCC overflow interrupt enable bit
PEIE = INTCON.6 0 Perpiheral interrupt enable bit
GIE = INTCON.7 0 Global interrupt enable bit

PIR1 = 0Ch 0 Peripheral interrupt flags register
TMR1IF = PIR1.0 0 Timer1 interrupt flag bit
TMR2IF = PIR1.1 0 Timer2 interrupt flag bit
CCP1IF = PIR1.2 0 CCP1 interrupt flag bit
SSPIF = PIR1.3 0 SSP interrupt flag bit
TXIF = PIR1.4 0 ASP transmit interrupt flag bit
RCIF = PIR1.5 0 ASP receive interrupt flag bit
ADIF = PIR1.6 0 ADC completion interrupt flag bit
PSPIF = PIR1.7 0 PSP interrupt flag bit

PIR2 = 0Dh 0 Peripheral interrupt flags register
CCP2IE = PIR2.0 0 CCP2 interrupt enable bit

TMR1L = 0Eh 0 Timer1 low byte register

TMR1H = 0Fh 0 Timer1 high byte register

T1CON = 10h 0 Timer1 control register
TMR1ON = T1CON.0 0 Timer1 enable bit
TMR1CS = T1CON.1 0 Timer1 clock select bit
T1INSYNC = T1CON.2 0 Timer1 sync enable bit
T1OSCEN = T1CON.3 0 Timer1 oscillator enable bit
T1CKPS0 = T1CON.4 0 Timer1 clock prescaler select bit0
T1CKPS1 = T1CON.5 0 Timer1 clock prescaler select bit1

TMR2 = 11h 0 Timer2 register

T2CON = 12h 0 Timer2 control register
T2CKPS0 = T2CON.0 0 Timer2 clock prescaler select bit0

PIC16Cxx Pre-Defined Symbols

Page 212 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

T2CKPS1 = T2CON.1 0 Timer2 clock prescaler select bit1
TMR2ON = T2CON.2 0 Timer2 enable bit
TOUTPS0 = T2CON.3 0 Timer2 postscaler select bit0
TOUTPS1 = T2CON.4 0 Timer2 postscaler select bit1
TOUTPS2 = T2CON.5 0 Timer2 postscaler select bit2
TOUTPS3 = T2CON.6 0 Timer2 postscaler select bit3

SSPBUF = 13h 0 Synchronous Serial Port receive/transmit register

SSPCON = 14h 0 Synchronous Serial Port control register
SSPM0 = SSPCON.0 0 SSP mode select bit0
SSPM1 = SSPCON.1 0 SSP mode select bit1
SSPM2 = SSPCON.2 0 SSP mode select bit2
SSPM3 = SSPCON.3 0 SSP mode select bit3
CKP = SSPCON.4 0 SSP clock polarity select bit
SSPEN = SSPCON.5 0 SSP enable bit
SSPOV = SSPCON.6 0 SSP receive overflow flag bit
WCOL = SSPCON.7 0 SSP write collision detect bit

CCPR1L = 15h 0 Capture1/Compare1/PWM1 low byte register

CCPR1H = 16h 0 Capture1/Compare1/PWM1 high byte register

CCP1CON = 17h 0 Capture1/Compare1/PWM1 control register
CCP1M0 = CCP1CON.0 0 CCP1 mode select bit0
CCP1M1 = CCP1CON.1 0 CCP1 mode select bit1
CCP1M2 = CCP1CON.2 0 CCP1 mode select bit2
CCP1M3 = CCP1CON.3 0 CCP1 mode select bit3
CCP1Y = CCP1CON.4 0 CCP1 10-bit PWM low order bit0
CCP1X = CCP1CON.5 0 CCP1 10-bit PWM low order bit1

RCSTA = 18h 0 Asynchronus Serial Port status and control register
RCD8 = RCSTA.0 0 ASP 9th/parity bit of received data
OERR = RCSTA.1 0 ASP overrun error bit
FERR = RCSTA.2 0 ASP framing error bit
CREN = RCSTA.4 0 ASP continuous-receive enable bit
SREN = RCSTA.5 0 ASP single-receive enable bit
RC8_9 = RCSTA.6 0 ASP receive data length bit
SPEN = RCSTA.7 0 ASP enable bit

TXREG = 19h 0 Asynchronous serial port transmit register

RCREG = 1Ah 0 Asynchronous serial port receive register

CCPR2L = 1Bh 0 Capture2/Compare2/PWM2 low byte register

CCPR2H = 1Ch 0 Capture2/Compare2/PWM2 high byte register

CCP2CON = 1Dh 0 Capture2/Compare2/PWM2 control register
CCP2M0 = CCP2CON.0 0 CCP2 mode select bit0
CCP2M1 = CCP2CON.1 0 CCP2 mode select bit1
CCP2M2 = CCP2CON.2 0 CCP2 mode select bit2
CCP2M3 = CCP2CON.3 0 CCP2 mode select bit3
CCP2Y = CCP2CON.4 0 CCP2 10-bit PWM low order bit0
CCP2X = CCP2CON.5 0 CCP2 10-bit PWM low order bit1

ADRES = 1Eh 0 Analog to Digitial Converter result register

ADCON0 = 1Fh 0 Analog to Digitial Converter control register 0
ADON = ADCON0.0 0 ADC power control bit
GO_DONE = ADCON0.2 0 ADC go command / done flag bit
CHS0 = ADCON0.3 0 ADC channel select bit 0
CHS1 = ADCON0.4 0 ADC channel select bit 1
CHS2 = ADCON0.5 0 ADC channel select bit 2
ADCS0 = ADCON0.6 0 ADC clock select bit 0
ADCS1 = ADCON0.7 0 ADC clock select bit 1

OPTION = 01h 1 OPTION register

PIC16Cxx Pre-Defined Symbols

Page 213 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

PS0 = OPTION.0 1 Prescaler bit 0
PS1 = OPTION.1 1 Prescaler bit 1
PS2 = OPTION.2 1 Prescaler bit 2
PSA = OPTION.3 1 Prescaler assignment bit
RTE = OPTION.4 1 RTCC signal edge bit
RTS = OPTION.5 1 RTCC signal source bit
INTEDG = OPTION.6 1 RB0/INT edge select bit
RBPU = OPTION.7 1 RB weak pull-up enable bit

TRISA = 05h 1 RA tristate control register

TRISB = 06h 1 RB tristate control register

TRISC = 07h 1 RC tristate control register

TRISD = 08h 1 RD tristate control register

TRISE = 09h 1 RE tristate control register
TRISE0 = TRISE.0 1 RE0 tristate control bit
TRISE1 = TRISE.1 1 RE1 tristate control bit
TRISE2 = TRISE.2 1 RE2 tristate control bit
PSPMODE = TRISE.4 1 PSP mode bit
IBOV = TRISE.5 1 PSP input buffer overflow flag
OBF = TRISE.6 1 PSP output buffer full flag
IBF = TRISE.7 1 PSP input buffer full flag

PIE1 = 0Ch 1 Peripheral interrupt enable register
TMR1IE = PIE1.0 1 Timer1 interrupt enable bit
TMR2IE = PIE1.1 1 Timer2 interrupt enable bit
CCP1IE = PIE1.2 1 CCP1 interrupt enable bit
SSPIE = PIE1.3 1 SSP interrupt enable bit
TXIE = PIE1.4 1 ASP transmit interrupt enable bit
RCIE = PIE1.5 1 ASP receive interrupt enable bit
ADIE = PIE1.6 1 ADC interrupt enable bit
PSPIE = PIE1.7 1 PSP interrupt enable bit

PCON = 0Eh 1 Power-On-Reset detection register
POR = PCON.1 1 POR flag bit

PR2 = 12h 1 Timer2 period register

SSPADD = 13h 1 Synchronous Serial Port I2C address register

SSPSTAT = 14h 1 Synchronous Serial Port status register
BF = SSPSTAT.0 1 SSP buffer full flag bit
UA = SSPSTAT.1 1 SSP 10-bit I2C update address flag bit
R_W = SSPSTAT.2 1 SSP I2C read/write status bit
S = SSPSTAT.3 1 SSP I2C start flag bit
P = SSPSTAT.4 1 SSP I2C stop flag bit
D_A = SSPSTAT.5 1 SSP I2C data/address flag bit

TXSTA = 18h 1 Asynchronous Serial Port transmit status and control
TXD8 = TXSTA.0 1 ASP 9th bit of transmit data
TRMT = TXSTA.1 1 ASP transmit shift register empty
BRGH = TXSTA.2 1 ASP high baud rate select bit
SYNC = TXSTA.4 1 ASP mode bit
TXEN = TXSTA.5 1 ASP transmit enable bit
TX8_9 = TXSTA.6 1 ASP transmit data length bit
CSRC = TXSTA.7 1 ASP clock source select bit

SPBRG = 19h 1 Asynchronous Serial Port baud rate register

ADCON1 = 1Fh 1 Analog to Digitial Converter control register 1
PCFG0 = ADCON1.0 1 RA port configuration bit 0
PCFG1 = ADCON1.1 1 RA port configuration bit 1
PCFG2 = ADCON1.2 1 RA port configuration bit 2

PIC16Cxx Pre-Defined Symbols

Page 214 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE

Page 215 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Parallax Distributors

Australia

MicroZed Computers Phone: int + 61 67 722 777
Armidale Fax: int + 61 67 728 987

Technology Affair Phone: int + 61 9 246 4810
Carine, Western Australia Fax: int + 61 9 246 4809

Austria, Germany, Switzerland

Wilke Technology Phone: int + 49 241 15 4071
Aachen Fax: int + 49 241 15 8475

Belgium

G.S.E. Phone: int + 32 41 77 5151
Soumagne Fax: int + 32 41 77 5353

Canada

Aerosystems International Phone: (514) 336-9426
St. Laurent, Quebec Fax: (514) 336-4383

Czech Republic

MITE Phone: int + 42 49 5813 252
Hradec Králové Fax: int + 42 49 5813 260

France

Selectronic Phone: int + 33 20 52 98 52
Lille Fax: int + 33 20 52 12 04

Greece

Peter Caritato & Associates Phone: int + 30 1 902 0115
Athens Fax: int + 30 1 901 7042

Page 216 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Hungary

HUMANsoft Phone: int + 36 1163 2879
Budapest Fax: int + 36 1251 3673

India

AL Systems Phone: int + 91 422 232 561
Coimbatore Fax: int + 91 422 213 849

Israel

Elina Electronic Ltd. Phone: int + 972 3 498 543
Tel Aviv Fax: int + 972 3 498 745

Japan

Akizuki Denshi Tsusho Ltd. Phone: int + 81 3 3251 1779
Tokyo Fax: int + 81 3 3432 4492

Netherlands

Antratek Phone: int + 31 1803 17666
Nieuwerkerk A/D Ijssel Fax: int + 31 1803 16664

South Africa

Jakanaka Phone: int + 27 11 907 8475
Alberton Fax: int + 27 11 907 9426

South Korea

Prochips Phone: int + 82 2 849 8567
Seoul Fax: int + 82 2 849 8659

Taiwan

United Tech Electronic Corp. Phone: int + 886 2 647 1978
Taipei Fax: int + 886 2 648 1895

Parallax Distributors

Page 217 • PIC Tools Manual 3.1 • Parallax, Inc. • (916) 624-8333

Parallax Distributors

United Kingdom

Milford Instruments Phone: int + 44 977 683 665
South Milford, Leeds Fax: int + 44 977 681 465

United States

Digi-Key Phone: (800) 344-4539
Thief River Falls, MN Fax: (218) 681-3380

Marlin P. Jones & Assoc. Phone: (407) 848-8236
Lake Park, FL Fax: (407) 844-8764

