
PIC Application Notes

TechTools • PIC Application Notes • Page 53

APPS

Introduction. This application note presents a program in TechTools
assembly language that demonstrates a technique for organizing a
program into multiple tasks.

Background. Like most computers, the PIC executes its instructions one
at a time. People tend to write programs that work the same way; they
perform one task at a time.

It’s often useful to have the controller do more than one thing at a time,
or at least seem to. The first step in this direction is often to exploit the
dead time from one task—the time it would normally spend in a delay
loop, for instance—to handle a second task. The PIC’s speed makes this
quite practical in many cases.

When several tasks must be handled at once, this approach can quickly
become unworkable. What we need is a framework around which to
organize the tasks. We need an operating system.

The program in the listing illustrates an extremely simple operating
system that runs each of eight small subprograms in turn. When the
subprograms finish their work, they jump back to the system. Notice that
this method does not require the call instruction, so it leaves the two-level
stack free for the use of the subprograms.

���� ��� ����	
 The circuit and program comprise an eight-LED
flasher. Each of the LED’s flashes at a different rate. While this could be
accomplished differently, the program is easier to understand and
maintain because the code that controls each LED is a separate task.

The “system” portion of the program acts like a spinning rotary switch.
Each time it executes, it increments the task number and switches to the
next task. It does this by taking advantage of the PIC’s ability to modify
the program counter. Once the task number is loaded into the working
register, the program executes the instruction jmp pc+w. The destina-
tions of these jumps contain jmp instructions themselves, and send the
program to one of the eight tasks. Not surprisingly, a list of jmp
instructions arranged like this is called a “jump table.”

Modifications. For the sake of simplicity, this task-switching program

9: Managing Multiple Tasks

Managing Multiple
Tasks

PIC Application Notes

Page 54 • PIC Application Notes • TechTools

LED470

LED470

LED470

PIC
16C54

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA2

RA3

RTCC

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

+5

+5

LED470

LED470

LED470

LED470

LED470

ceramic resonator
w/integral capacitors

lacks one important attribute: fixed timing. The individual tasks are
permitted to take as much or as little time as they require. In some real
applications, this wouldn’t be acceptable. If the system maintains a
master timer (like the variable ticks in this program) it should increment
at a consistent rate.

With many possible paths through the code for each task, this may seem
like another problem. A straightforward solution is to use the PIC’s RTCC
to time how long a particular task took, then use that number to set a
delay to use up all of the task’s remaining time. All you need to know is
the worst-case timing for a given task.

Program listing. This program may be downloaded from our Internet ftp
site at ftp.tech-tools.com. The ftp site may be accessed directly or
through our web site at http://www.tech-tools.com.

9: Managing Multiple Tasks

PIC Application Notes

TechTools • PIC Application Notes • Page 55

APPS

�������������
��

; This program demonstrates task switching using the PIC’s relative addressing
; mode. It handles eight tasks, each of which flashes an LED at a different rate. The
; flashing routines base their timing on a master clock variable called ticks.

; Remember to change device info if using a different part.
device pic16c54,xt_osc,wdt_off,protect_off
reset start

LEDs = rb

; Put variable storage above special-purpose registers.
org 8

task ds 1 ; The task number used by the
; system.

ticks ds 1 ; Master time clock, increments
; once for each system cycle.

time0 ds 1 ; Timer for task 0.
time1 ds 1 ; Timer for task 1.
time2 ds 1 ; Timer for task 2.
time3 ds 1 ; Timer for task 3.
time4 ds 1 ; Timer for task 4.
time5 ds 1 ; Timer for task 5.
time6 ds 1 ; Timer for task 6.
time7 ds 1 ; Timer for task 7.

; Set starting point in program ROM to zero.
org 0

start mov !rb,#00000000b ; Set port rb to output.
mov task, #7 ; Set task number.
clr ticks ; Clear system clock.
clr LEDs ; Clear LEDs

system inc task ; Next task number.
cjne task, #8, :cont ; No rollover? Continue.
clr task ; Rollover: reset task and
inc ticks ; increment the clock.

:cont mov w, task ; Prepare to jump.
jmp pc+w ; Jump into table, and from there
jmp task0 ; to task #.
jmp task1
jmp task2
jmp task3
jmp task4
jmp task5
jmp task6
jmp task7

9: Managing Multiple Tasks

PIC Application Notes

Page 56 • PIC Application Notes • TechTools

task0 cjne ticks, #255,:cont ; Every 255 ticks of system clock
inc time0 ; increment task timer. Every 3

; ticks
cjne time0, #3, :cont ; of task timer, toggle LED, and
clr time0 ; reset task timer.
xor LEDs, #00000001b

:cont jmp system

task1 cjne ticks, #255,:cont
inc time1
cjne time1, #8, :cont
clr time1
xor LEDs, #00000010b

:cont jmp system

task2 cjne ticks, #255,:cont
inc time2
cjne time2, #6,:cont
clr time2
xor LEDs, #00000100b

:cont jmp system

task3 cjne ticks, #255,:cont
inc time3
cjne time3, #11,:cont
clr time3
xor LEDs, #00001000b

:cont jmp system

task4 cjne ticks, #255,:cont
inc time4
cjne time4, #12, :cont
clr time4
xor LEDs, #00010000b

:cont jmp system

task5 cjne ticks, #255,:cont
inc time5
cjne time5, #4, :cont
clr time5
xor LEDs, #00100000b

:cont jmp system

task6 cjne ticks, #255,:cont
inc time6
cjne time6, #23,:cont
clr time6
xor LEDs, #01000000b

9: Managing Multiple Tasks

PIC Application Notes

TechTools • PIC Application Notes • Page 57

APPS

:cont jmp system

task7 cjne ticks, #255,:cont
inc time7
cjne time7, #9,:cont
clr time7
xor LEDs, #10000000b

:cont jmp system

9: Managing Multiple Tasks

