
PIC Application Notes

TechTools • PIC Application Notes • Page 47

APPS

Introduction. This application note presents a program in TechTools
assembly language that uses the PIC16C71’s built-in analog-to-digital
converter (ADC) to measure an input voltage and flash an LED at a
proportional rate.

Background. One of the most popular enhancements offered by the new
PIC16C71 is its eight-bit ADC, which features:

• 20-microsecond (µs) conversion time (nearly 50,000 samples
per second, depending on additional processing time).

• Four multiplexed inputs.

• Built-in sample-and-hold.

• ±1 least-significant-bit accuracy (better than 20 millivolts with a
5-volt reference).

• Selectable voltage reference (Vdd or RA.3).

While using the ADC is fairly straightforward, it does require a series of
decisions much like those required to select and use a separate ADC.
The first consideration is hardware.

10k

4.7 pF

PIC
16C71

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RTCC/RA4

MCLR

Vss

RB0

RB1

RB2

RB3

RA0/Ain0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

+5

+5

5k potRA1/Ain1RA2/Ain2

RA3/Ain3

220

LED

1k

8: The PIC16C71 A/D Convertor

The PIC16C71 A/D
Convertor

PIC Application Notes

Page 48 • PIC Application Notes • TechTools

Input Characteristics. The ADC produces a digital output that is propor-
tional to an analog input. A voltage reference determines the input
voltage that will produce a full-scale (255) digital output. The voltage
reference can be the +5-volt power-supply rail, or some other voltage
source between 3 volts and the power supply voltage + 0.3 volts. The
ADC is most accurate with a reference voltage of 5.12 volts, according
to the manufacturer’s specifications.

The specifications recommend that the analog voltage source being
measured have an impedance of no more than 10ký. Above this value,
accuracy suffers. They also suggest that the source have not less than
500ý impedance. This limits current through the PIC in the event that
your program reconfigures the analog input pin as an output, or some
other circuit trauma occurs.

Clock Source. The PIC’s ADC, like the PIC itself, requires a clock signal.
The ADC performs a conversion in 10 of its clock cycles, which must be
no shorter than 2µs. Clock signals for the ADC can come from two
sources, the PIC’s own clock or an on-chip resistor-capacitor (RC)
oscillator exclusive to the ADC.

When the PIC’s clock is the source, it is divided by 2, 8 or 32, depending
on the status of the ADC clock source bits (see figure 2). In order to have
an ADC clock signal of 2µs or longer, the PIC clock speed must not
exceed 1, 4, or 16 MHz, respectively. If you plan to run the PIC faster than
16 MHz, or you want the ADC conversion rate to be independent of the
PIC clock, you must use the ADC’s RC oscillator.

The tradeoff in using the RC oscillator is that its period can vary from 2
to 6µs, depending on temperature and manufacturing tolerances.

Interrupt Enable. The ADC is relatively slow—at 20 MHz the PIC can
execute 100 instructions in the 20µs the ADC takes to make a conver-
sion. In some cases, it makes sense not to force a PIC program to wait
in a loop for a conversion to finish. The alternative is to configure the ADC
to announce “conversion complete” through an interrupt. To keep things
as simple as possible, the example program does not take advantage of
interrupt capability.

8: The PIC16C71 A/D Convertor

PIC Application Notes

TechTools • PIC Application Notes • Page 49

APPS

Pin Configuration and Voltage Reference. Pins RA.0 through RA.3 can
serve as inputs to the ADC. One of the choices you must make when
setting up the ADC is which pins to configure as analog inputs, which (if
any) as digital inputs, and what to use as a voltage reference. Figure 2
shows the range of available choices.

Note that the control register containing the configuration and voltage
reference bits is in register page 1. To access it, you must first set bit RP0.
The program listing shows how.

Input Selection. Only one of the pins configured for analog input can

Figure 2. ADC control registers.

ADC Control and Status Register (ADCON0, register page 0, 08h)

CHS0 go_done ADIF ADONCHS1unusedADCS0ADCS1
0234567

ADC power switch:
0 = ADC off
1 = ADC on

Interrupt flag bit:
set when conversion
is complete

Conversion flag bit:
set to start conversion
cleared when conversion is done

Channel select bits:
00 = channel 0 (Ain0)
01 = channel 1 (Ain1)
10 = channel 2 (Ain2)
11 = channel 3 (Ain3)

1

Clock select bits:
00 = Oscillator/2
01 = Oscillator/8
10 = Oscillator/32
11 = RC clock

Pin configuration bits:
00 = RA0ÐRA3, analog; Vdd reference
01 = RA0ÐRA2, analog; RA3 reference
10 = RA0/1, analog; RA2/3, digital; Vdd reference
11 = RA0ÐRA3, digital input

Remaining bits of ADCON1 are
unimplemented and always read 0

ADC Control Register (ADCON1, register page 1, 88h)

0 0 ADIF ADON0000
0234567 1

8: The PIC16C71 A/D Convertor

PIC Application Notes

Page 50 • PIC Application Notes • TechTools

actually sample at any one time. In other words, if you want ADC input
from two or more channels, your program must select a channel, wait
long enough for the sample-and-hold circuit to charge up, command a
conversion, get the result, and select the next channel...

How long should the program wait for the sample-and-hold? Microchip
suggests a worst case of 4.67µs plus two ADC clock cycles (after a
conversion, the sample-and-hold takes a two-cycle break before it
begins sampling again).

How it works. The PIC in figure 1 accepts a voltage from a pot wired as
variable voltage divider. The PIC’s ADC, which is set up to use Vdd as
a reference, outputs a one-byte value that’s proportional to the input
voltage. This value controls a timing routine that flashes an LED. When
the input voltage is near 5 volts, the LED flashes about once a second.
When it’s near 0, the LED flashes very rapidly.

The program listing shows how it’s done. Most of the code is devoted to
setting up the ADC. Constants at the beginning of the program are
assigned with values that, when loaded into the appropriate ADC control
registers, turn the ADC’s various features on and off. If you wish to
change, for instance, the pin that the circuit uses for analog input, just
comment out the line containing AD_ch = 0 and uncomment the desired
channel (“commenting” and “uncommenting” are handy techniques for
temporarily removing and restoring instructions in source code. Putting
a semicolon (;) in front of a line causes the assembler to ignore it, as
though it were a comment).

If you accidentally leave two assignements for AD_ch uncommented,
the assembler will catch the mistake, flag the “redefinition” and tell you
the line number of the error.

The assembler combines values assigned to ADC_ch and ADC_clk into
a single byte by performing a logical OR (|) on the values and putting the
result into another constant, ADC_ctl. This technique makes the pro-
gram easier to understand and modify, and doesn’t cost a thing in PIC
program memory or processing time. The assembler does all the work.

Program listing. This program may be downloaded from our Internet ftp

8: The PIC16C71 A/D Convertor

PIC Application Notes

TechTools • PIC Application Notes • Page 51

APPS

site at ftp.tech-tools.com. The ftp site may be accessed directly or
through our web site at http://www.tech-tools.com.

8: The PIC16C71 A/D Convertor

���������	�
���

�� ���!"��#

; This program demonstrates use of the ADC in a simple circuit that samples a
; voltage and flashes an LED at a proportional rate. The header contains a number
; of constants representing setup constants for the ADC control registers.
; Uncomment the constant corresponding to the desired ADC setting.

device rc_osc,wdt_off,pwrt_off,protect_off
id ‘ADC1’

; The following constants set the ADC clock source and speed. Uncomment one.
;AD_clk = 0 ; Oscillator x 2 (<= 1 MHz).
;AD_clk = 64 ; Oscillator x 8 (<= 4 MHz).
;AD_clk = 128 ; Oscillator x 32 (<= 16 MHz).
AD_clk = 192 ; RC oscillator, 2–6 us.

; The following constants select a pin for ADC input. Uncomment one.
AD_ch = 0 ; ADC channel 0 (Ain0, pin 17).
;AD_ch = 8 ; ADC channel 1 (Ain1, pin 18).
;AD_ch = 16 ; ADC channel 2 (Ain0, pin 1).
;AD_ch = 24 ; ADC channel 3 (Ain0, pin 2).

AD_ctl = AD_clk | AD_ch ; Logical OR.

; The following constants determine which pins will be usable by the ADC and
; whether Vdd or RA.3 will serve as the voltage reference. Uncomment one.
AD_ref = 0 ; RA.0-3 usable, Vdd reference.
;AD_ref = 1 ; RA.0-3 usable,RA.3 reference.
;AD_ref = 2 ; RA.0/1 usable, Vdd reference.
;AD_ref = 3 ; All unusable—digital inputs only.

org 0Ch
counter1 ds 1
counter2 ds 1

; Set starting point in program ROM to zero. Jump past interrupt vector to beginning
; of program. (This program doesn’t use interrupts, so this is really not needed, but
it
; will be easier to add interrupts later if required.)

org 0
jmp 5
org 5

PIC Application Notes

Page 52 • PIC Application Notes • TechTools

start mov !ra, #255 ; Set RA to input.
mov !rb, #0 ; Set RB to output.
mov intcon, #0 ; Turn interrupts off.
mov adcon0,#AD_ctl ; Set AD clock and channel.
setb rp0 ; Enable register page 1.
mov adcon1,#AD_ref ; Set usable pins, Vref.
clrb rp0 ; Back to register page 0.
setb adon ; Apply power to ADC.

:loop call wait ; Delay for time determined by
; ADC input.

setb rb.0 ; Turn LED on.
call wait ; Delay for time determined by

; ADC input.
clrb rb.0 ; Turn LED off.
goto :loop ; Endless loop.

wait setb go_done ; Start conversion.
:not_done snb go_done ; Poll for 0 (done).

jmp :not_done ; If 1, poll again.
mov counter2,adres ; Move ADC result into counter.

; The number of loops this delay routine makes is dependent on the result of the AD
; conversion. The higher the voltage, the longer the delay.
:loop djnz counter1, :loop

djnz counter2, :loop
ret

8: The PIC16C71 A/D Convertor

