
PIC Application Notes

TechTools •  PIC  Application Notes  • Page 9

APPS

Introduction. This application note presents a simple program for receiv-
ing asynchronous serial data with PIC microcontrollers. The example
program, written using  TechTools assembly language, displays re-
ceived bytes on a bank of eight LEDs.

Background. Many controller applications involve receiving data or
commands from a larger system. The RS-232 serial port is a nearly
universal means for this communication. While the PIC lacks the serial
receive function found on some more expensive chips, it can readily be
programmed to receive serial data.

A byte of serial data is commonly sent as a string of 10 bits; a start bit,
eight data bits, and a stop bit, as shown in figure 1 below. The start and
stop bits help the receiver to synchronize to the incoming data bits. In
some cases, a serial transmitter will lengthen the stop bit to 1.5 or 2 times
the duration of the data bits in order to ensure proper sync under noisy
conditions.

The speed of a serial transmission is expressed in baud or bits per
second (bps). Since a complete transmission is 10 bits long, the number
of bytes per second is one-tenth the baud rate. A 1200-baud signal
conveys 120 bytes per second. The bit duration is 1 second divided by
the baud rate. For instance, each bit of a 1200-baud signal is 833
microseconds long.

RS-232 is an electrical standard for signals used in serial communica-
tion. It represents a binary 1 with a level of -5 to -15 volts, and a 0 with
+5 to +15 volts. In order for a 5-volt device like the PIC to interface with
this signal, additional circuitry must convert the RS-232 signal to logic
levels. The 1489 quad line receiver used in the circuit (see schematic,
figure 3) can convert four RS-232 signals to 5-volt logic levels; the
example circuit uses only one section of the device.

Figure 1. A byte of serial data. The byte depicted is 01011010, the ASCII code for Z.

START
BIT

BIT
0

BIT
1

BIT
2

BIT
3

BIT
4

BIT
5

BIT
6

BIT
7

STOP
BIT

2: Receiving RS-232 Serial Data

Receiving RS-232
Serial Data



PIC Application Notes

Page 10 • PIC  Application Notes • TechTools

Where cost or space is a problem, the PIC can accept the RS-232 signal
through a 22k resistor, as shown in the inset to figure 3. The resistor limits
the input current, while the PIC’s internal clamping diodes (intended to
protect against static electricity) clip the voltage to logic levels. The
resistor method does not invert the RS-232 signal, so three minor
changes to the program are required as shown in comments to listing 1.
The method also gives up the noise rejection built into the 1489, and
should not be used in noisy environments or over long cable runs.

The example presented here does not use any of the RS-232 handshak-
ing lines. These lines help when a fast computer must communicate with
(for instance) a slow printer. When the receiving device does not use the
handshaking lines, it is necessary to loop them back as shown in figure
2. That way, when the computer asks for permission to send, the signal
appears at its own clear-to-send pin. In effect, it answers its own
question.

Although it is the most common, RS-232 is not the only serial-signaling
standard. RS-422 is becoming increasingly popular because of its
resistance to noise, high speed, long allowable wire runs, and ability to
operate from a single-ended 5-volt power supply. Since the only differ-
ence between RS-232 and RS-422 is the electrical interface, conversion
requires only the substitution of an RS-422 line receiver chip.

Figure 2. Hookups for standard 9- and 28-pin
connectors. Connecting RTS to CTS disables
normal handshaking, which is not used here.

RTS
CTS

DSR

DCD

DTR

to PIC circuit
GND

to SERIAL INDATA

GND

DB-25
PIN

DB-9
PIN

2 3

4 7
5 8

6 6

8 1

20 4

7 5

2: Receiving RS-232 Serial Data



PIC Application Notes

TechTools •  PIC  Application Notes  • Page 11

APPS

How it works. The example program in listing 1 is a no-frills algorithm for
receiving serial data in the popular N81 format; i.e., no parity bit, eight
data bits, and one stop bit. Listing 2 is a BASIC program for sending
individual bytes to the circuit.

Listing 1 begins by setting up the input and output bits. It then enters a
loop waiting to detect the start bit. Once the start bit is detected, the
program waits one-half bit time and checks to see whether the start bit
is still present. This helps ensure that the program isn’t fooled by a noise
burst into trying to receive a nonexistent transmission. It also makes sure
that subsequent bits are read during the middle of their time slots;
another precaution against noise.

Once it detects and verifies the start bit, the program enters another loop
that does the actual job of receiving the data. It works like this:

• Wait one bit time.
• Copy input bit to carry bit.
• Rotate the receive byte right.
• Decrement the bit counter.
• Is the counter zero?

> No, loop again.
> Yes, exit the loop.

If you are unfamiliar with the rotate right (rr) instruction, you may not see
how the input bit gets from the carry bit into the receive byte. Performing
an rr on a byte moves its bits one space to the right. Bit 7 goes to bit 6,
bit 6 to bit 5, and so on. Bit 0 is moved into the carry bit. The carry bit
moves into bit 7.

Once the byte is received, the program waits a final bit delay (until the
middle of the stop bit), copies the received byte to the output port to which
the LEDs are connected, and goes back to the beginning to await
another start bit.

The program can be set up for most standard data rates. The table lists
PIC clock speeds and values of the bit time constant bit_K (declared at
the beginning of listing 1) for a wide range of common rates. For other
combinations of clock speed and data rate, just replace the delay

2: Receiving RS-232 Serial Data



PIC Application Notes

Page 12 • PIC  Application Notes • TechTools

routines with ones that provide the appropriate timing. The footnote to
the table gives general guidance.

One final hardware note: Although timing isn’t overly critical for receiving
this type of serial data, resistor/capacitor timing circuits are inadequate.
The PIC’s RC clock is specified to fairly loose tolerances (up to ±28
percent) from one unit to another. The values of common resistors and
capacitors can vary substantially from their marked values, and can
change with temperature and humidity. Always use a ceramic resonator
or crystal in applications involving serial communication.

Program listing. This program may be downloaded from our Internet ftp
site at ftp.tech-tools.com. The ftp site may be accessed directly or
through our web site at http://www.tech-tools.com.

Figure 3.
Schematic to

accompany
RCV232.SRC.

LED470

LED470

LED470

PIC
16C54

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA2

RA3

RTCC

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

+5

+5

47pF

RS-232 
serial in 13

12

11

1/4 MC1489A:
pins 1, 4, 7, 10 to gnd; pin 14 to 
+5 Vdc; rest not connected.

LED470

LED470

LED470

LED470

LED470

ceramic resonator
w/integral capacitors

A 22k resistor may be used 
instead of the 1489. Change 
the program as marked in 
listing 1. 

1
RA2

RS-232 
serial in

22k

2: Receiving RS-232 Serial Data



PIC Application Notes

TechTools •  PIC  Application Notes  • Page 13

APPS

��������	�
���
����
���
��������	�������������������������
�����������

Clock
Serial Bit Rate (bit time)

Frequency
600 1200 2400 4800 9600 19,200

1 MHz 206 102 50 24 Ñ Ñ Ñ
2 MHz Ñ 206 102 50 24 Ñ Ñ
4 MHz Ñ Ñ 206 102 50 24 Ñ
8 MHz Ñ Ñ Ñ 206 102 50 24

Other combinations of clock speed and bit rate can be supported by changing the bit_delay and

start_delay subroutines. The required bit delay is  1
bitÊrate

 . For example, at 1200 baud the bit delay

is  1
1200

  = 833µs. The start delay is half of the bit delay; 416µs for the 1200-baud example.

Calculate the time delay of a subroutine by adding up its instruction cycles and multiplying by  
4

clockÊspeed
 . At 2 MHz, the time per instruction cycle is  4

2   ,000   ,000
 = 2µs.  

300
(3.33 ms) (1.66 ms) (833 µs) (417 µs) (208 µs) (104 µs) (52 µs)

�������� !����"#"

; This program receives a byte of serial data and displays it on eight LEDs
; connected to port RB. The receiving baud rate is determined by the value of the
; constant bit_K and the clock speed of the PIC. See the table in the application
note
; (above) for values of bit_K. For example, with the clock running at 4 MHz and a
; desired receiving rate of 4800 baud, make bit_K 50.

; Remember to change device info if programming a different PIC. Do not use RC
; devices. They are not sufficiently accurate or stable for serial communication.

device pic16c54,xt_osc,wdt_off,protect_off
reset begin

bit_K = 24 ; Change this value for desired
; baud rate as shown in table.

half_bit = bit_K/2
serial_in = ra.2
data_out = rb

; Variable storage above special-purpose registers.
org 8

delay_cntr ds 1 ; counter for serial delay routines
bit_cntr ds 1 ; number of received bits
rcv_byte ds 1 ; the received byte

; Org 0 sets ROM origin to beginning for program.
org 0

2: Receiving RS-232 Serial Data



PIC Application Notes

Page 14 • PIC  Application Notes • TechTools

; Set up I/O ports.

begin mov !ra, #00000100b ; Use RA.2 for serial input.
mov !rb, #0 ; Output to LEDs.

:start_bit snb serial_in ; Detect start bit. Change to sb
; serial_in  if using 22k resistor
; input.

jmp :start_bit ; No start bit yet? Keep watching.
call start_delay ; Wait one-half bit time to the

; middle of the start bit.

jb Serial_in, :start_bit ; If the start bit is still good,
; continue. Otherwise, resume
; waiting.

; Change to jnb Serial_in,
:start_bit

; if using 22k resistor input.

mov bit_cntr, #8 ; Set the counter to receive 8 data
; bits.

clr rcv_byte ; Clear the receive byte to get
; ready for new data.

:receive call bit_delay ; Wait one bit time.
movb c,Serial_in ; Put the data bit into carry.

; Change to movb  c,/Serial_in if
; using 22k resistor input.

rr rcv_byte ; Rotate the carry bit into the
; receive byte.

djnz bit_cntr,:receive ; Not eight bits yet? Get next bit.
call bit_delay ; Wait for stop bit.
mov data_out, rcv_byte ; Display data on LEDs.

goto begin:start_bit ; Receive next byte.

; This delay loop takes four instruction cycles per loop, plus eight instruction cycles
; for other operations (call, mov, the final djnz, and ret). These extra cycles become
; significant at higher baud rates. The values for bit_K in the table take the time
; required for additional instructions into account.

bit_delay mov delay_cntr,#bit_K

2: Receiving RS-232 Serial Data



PIC Application Notes

TechTools •  PIC  Application Notes  • Page 15

APPS

:loop nop
djnz delay_cntr, :loop
ret

; This delay loop is identical to bit_delay above, but provides half the delay time.

start_delay mov delay_cntr,#half_bit
:loop nop

djnz delay_cntr, :loop
ret

���$����������	���
��
������
���%����&����� '

10  REM  Open the serial port com1. Substitute the desired baud rate
20  REM  for 9600 in this line. The parameters CD0, CS0, DS0, and OP0
30  REM  serve to disable hardware handshaking. They may be omitted if
40  REM  these lines are looped back as shown in figure 2.
50  OPEN “com1:9600,N,8,1,CD0,CS0,DS0,OP0” FOR OUTPUT AS #1
60  CLS
70  REM  At the prompt, enter a value between 0 and 255 representing a
80  REM  byte of data to send out the serial port.
90  INPUT “ASCII code to send:  “, A%
100 PRINT #1, CHR$(A%);
110 GOTO 60
120 END

2: Receiving RS-232 Serial Data


