
PIC Application Notes

TechTools • PIC Application Notes • Page 61

APPS

Introduction. This application note shows how to use the Microchip
93LC56 EEPROM to provide 256 bytes of nonvolatile storage. It pro-
vides a tool kit of subroutines for reading, writing, and erasing the
EEPROM. (Note that EEPROMs made by other manufacturers will not
work with the PIC16Cxx.)

Background. Many designs take advantage of the PIC’s ability to store
tables of data in its EPROM program memory. The trouble is that the
larger the tables are, the smaller the space left for code. And many
applications could benefit from the ability to occasionally update data
tables for calibration or other purposes. What the PIC needs is the
equivalent of a tiny disk drive.

The Microchip 93C56 and 93LC56 electrically erasable PROMs
(EEPROMs) are perfect for these applications. They communicate
serially via a three- or four-wire bus using a simple synchronous
(clocked) communication protocol at rates of up to 2 million bits per

LEDs470
(all)

ceramic resonator
w/integral capacitors

PIC
16C54

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA2

RA3

RTCC

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

+5

1k

93LC56

1

2

3

4

8

7

6

5

CS

CK

DI

DO

Vcc

NC

ORG

Vss

+5

+5

11: Using Serial EEPROMs

Using Serial
EEPROMs

PIC Application Notes

Page 62 • PIC Application Notes • TechTools

second (Mbps). It’s possible to read a byte in as little as 10 microseconds
(including the time required to send the instruction opcode and address).
Once a program has begun reading data from the EEPROM, it can
continue reading subsequent bytes without stopping. These are clocked
in at the full 2 Mbps rate; 1 byte every 4 microseconds.

Erasing and writing these serial EEPROMs happens at a more leisurely
pace. While the opcode, address, and data can be clocked into the chip
at high speed, the EEPROM requires about 2 milliseconds to erase or
write a byte. During this time, the chip cannot process additional
instructions. The PIC can poll a flag to determine when the automatic
erase/write programming cycle is over. As soon as this flag goes high,
the EEPROM is ready for more instructions.

Data stored in the EEPROM will be retained for 10 years or more,
according to the manufacturer. The factor that determines the EEPROM’s
longevity in a particular application is the number of erase/write cycles.
Depending on factors such as temperature and supply voltage, the
EEPROM is good for 10,000 to 1 million erase/write cycles. This rules out
its use as a substitute for ordinary RAM, since many PIC applications
write to RAM thousands of times a second. At that rate, the EEPROM
could be unusable in as little as 20 seconds! For a thorough discussion
of EEPROM endurance, see the Microchip Embedded Control Hand-
book, publication number DS00092A, October 1992.

How it works. The circuit in the figure specifies a 93LC56 EEPROM, but
a 93C56 will work as well. The difference is that the LC device has a wider
Vcc range (2.5–5.5 V, versus 4–5.5 V), lower current consumption (3 mA
versus 4 mA), and can be somewhat slower in completing internal erase/
write operations, presumably at lower supply voltages. In general, the LC
type is less expensive, and a better match for the operating character-
istics of the PIC.

The schematic shows the data in and data out (DI, DO) lines of the
EEPROM connected together to a single PIC I/O pin. The 1k resistor
prevents the PIC and DO from fighting over the bus during a read
operation. During a read, the PIC sends an opcode and an address to the
EEPROM. As soon as it has received the address, the EEPROM
activates DO and puts a 0 on it. If the last bit of the address is a 1, the PIC

11: Using Serial EEPROMs

PIC Application Notes

TechTools • PIC Application Notes • Page 63

APPS

could end up sourcing current to ground through the EEPROM. The
resistor limits the current to a reasonable level.

The program listing is a collection of subroutines for reading, writing, and
erasing the EEPROM. All of these rely on Shout, a routine that shifts bits
out to the EEPROM. To perform an EEPROM operation, the software
loads the number of clock cycles into clocks and the data to be output into
temp. It then calls Shout, which does the rest.

If you don’t have the EEPROM data handy (Microchip Data Book,
DS00018D, 1991), you should know about a couple of subtleties. First,
when the EEPROM powers up, it is write protected. You must call
EEnable before trying to write or erase it. It’s a good idea to call EEdisbl
(disable writes) as soon as possible after you’re done. Otherwise, a
power glitch could alter the contents of your EEPROM. Also, you cannot
write all locations (EEWrall) without first erasing all locations (EEwipe).

Modifications. The table of constants at the beginning of the listing
specifies the opcodes for each of the EEPROM operations. Although the
opcodes are only three bits long, they are combined with a trailing don’t-
care bit. This bit is required for compatibility with the 512-byte 93LC66.
With the ’66, this would be address bit A8. If you want to modify this code
for the ’66, add a line to the read, write, and byte erase routines to copy
A8 into bit 4 of temp just before calling Shout. If you want to increase
capacity by adding more EEPROMs, you can bus the data and clock
lines together and provide separate chip selects to each device.

If you plan to run your PIC faster than 8 MHz, add one or two nops where
marked in the listing. The clock must be high for at least 500 nanosec-
onds. The low time must also be greater than 500 ns, but the move-data,
rotate, and looping instructions provide enough delay.

Program listing. This program may be downloaded from our Internet ftp
site at ftp.tech-tools.com. The ftp site may be accessed directly or
through our web site at http://www.tech-tools.com.

11: Using Serial EEPROMs

PIC Application Notes

Page 64 • PIC Application Notes • TechTools

���������	�

�������

; This program is a collection of subroutines for reading, writing, and erasing the
; 93LC56 (or 'C56) serial EEPROM. As a demonstration, it writes a scanning pattern
; to the 256 bytes of the EEPROM, and then reads it back to eight LEDs connected
; to port rb.

; Remember to change device info when programming part
device pic16c54,xt_osc,wdt_off,protect_off
reset start

D = ra.0 ; Pins DI and DO of the EEPROM
CLK = ra.1 ; Clock pin--data valid on rising

; edge
CS = ra.2 ; Chip select--high = active
ROP = 192 ; Opcode for read
WROP = 160 ; Opcode for write
EWEN = 152 ; Opcode to enable erase and

; write
EWDS = 128 ; Opcode to disable erase and

; write
ERAS = 224 ; Opcode to erase a byte
ERAL = 144 ; Opcode to erase all bytes
WRAL = 136 ; Opcode to write all bytes with

; specified data

org 8
temp ds 1 ; Temporary variable for EE

; routines
EEdata ds 1 ; Passes data to EEwrite/wrall,

; from EEread
EEaddr ds 1 ; Passes address to EErase,

; EEwrite, EEread
clocks ds 1 ; Number of clock cycles for

; SHiftOUT
tick1 ds 1 ; Timer for Delay--not required for

; EE routines
tick2 ds 1 ; Timer for Delay--not required for

; EE routines
org 0

start mov ra,#0 ; Clear ports
mov rb,#0
mov !ra,#0 ; Make all ra pins outputs initially
mov !rb,#0
call EEnable ; Turn off write/erase protection
mov EEdata,#1
mov EEaddr,#0

:loop call EEwrite ; Write scanning pattern to
; EEPROM

11: Using Serial EEPROMs

PIC Application Notes

TechTools • PIC Application Notes • Page 65

APPS

call Busy
rr EEdata
ijnz EEaddr,:loop
call EEdisbl ; Turn write/erase protection back

; on
mov EEaddr,#0

:loop2 call EEread
mov rb,EEdata
inc EEaddr
call delay
goto :loop2

; Shift out the bits of temp to the EEPROM data line.
Shout rl temp ; Rotate bit7 of temp into carry

movb D,c ; Move carry bit to input of
; EEPROM

setb CLK ; Clock the bit into EEPROM
nop ; Clock must be high > 500 ns
clrb CLK
djnz clocks,Shout
ret

; Read the byte in EEaddr into EEdata.
EEread mov temp,#ROP ; Move the read opcode into temp

mov clocks,#4 ; Number of bits to shift out (op+1)
setb CS
call Shout
mov clocks,#8
mov temp,EEaddr
call Shout
mov !ra,#1
mov clocks,#8

:read setb CLK
movb c,D
rl temp
clrb CLK
djnz clocks,:read
mov EEdata,temp
mov !ra,#0
clrb CS
ret

; Call to unprotect after EEdisbl or power up.
EEnable setb CS

mov clocks,#12
mov temp,#EWEN
call Shout
clrb CS

11: Using Serial EEPROMs

PIC Application Notes

Page 66 • PIC Application Notes • TechTools

ret

; Call to protect against accidental write/erasure.
EEdisbl setb CS

mov clocks,#12
mov temp,#EWDS
call Shout
clrb CS
ret

; Write the byte in EEdata to EEaddr.
EEwrite mov temp,#WROP

mov clocks,#4
setb CS
call Shout
mov clocks,#8
mov temp,EEaddr
call Shout
mov clocks,#8
mov temp,EEdata
call Shout
clrb CS
ret

; Erase the byte in EEaddr. Erasure leaves FFh (all 1s) in the byte.
EErase mov temp,#ERAS

mov clocks,#4
setb CS
call Shout
mov clocks,#8
mov temp,EEaddr
call Shout
ret

; Erase the entire EEPROM--all 256 bytes. Call before using EEwrall below.
EEwipe setb CS

mov temp,#ERAL
mov clocks,#12
call Shout
clrb CS
ret

; Write the byte in EEdata to every address. Call EEwipe first.
EEwrall setb CS

mov temp,#WRAL
mov clocks,#12
call Shout
mov clocks,#8
mov temp,EEdata

11: Using Serial EEPROMs

PIC Application Notes

TechTools • PIC Application Notes • Page 67

APPS

call Shout
clrb CS
ret

; Check flag to determine whether the EEPROM has finished its self-timed erase/
; write. Caution: This will lock up your program until D goes high.
Busy nop

mov !ra,#1
setb CS

:wait jnb D,:wait
clrb CS
mov !ra,#0
ret

Delay djnz tick1,Delay ; Delay routine for demo.
djnz tick2,Delay
ret

11: Using Serial EEPROMs

