Plug-in Developer's Guide V 1.0

Plug-in Developer's Guide

General Overview
Plugins are user created extensions to the Digi\dpplication. They allow the user to modify the
formatting of DigiView's built in interpreters, infggment entirely new custom protocols and/or control
the run-time behavior of the application.

Plug-ins are fully integrated into the DigiView digptions. Signals based on plug-ins can be sedich
exported, and printed in all the same manners itsibilypes. All snaps, scrolls, lists, wavefoknews,
searches, auto-searches, etc work in exactly the say as built-ins. In fact, the internal protioco
interpreters use the same framework as the plygmsiring equal functionality.

Terminology
Plugins have many uses ranging from serial protanalyzers to soft triggers. Each application rhigh
have different terms for the data generated. Wleua# the following terms throughout this discossi

1. Samples:
The raw data gathered from the hardware at its karafe.

2. Channels:
These are the physical connections to the tai@et. Logic Analyzers have 9,18 or 36 channels.

3. Active Channels:
The physical channels that are assigned to adtimals. These are the channels the hardware is
monitoring.

4. Signal
A higher level abstraction. It maps physical cheamno specific purposes in the signal. All
displays, searches, triggers, etc are definedimg®f Signals; not channels. You can reassign a
signal to a different channel without changing aimg else. Multiple signals can use the same
channel where appropriate (e.g.: several SYNC 8grauld use the same channel for their
CLOCK function.)

5. Signal Interpreter
This refers to the routines used to translatedleaaptured data into the representation in the
waveforms and list views. The signal interpretgesuthe channel mapping and signal
configuration options to extract data from the @pture data, interpret it and format it for
display.

6. Pre-processor and Post-processor / Pre-parser aftbst-parser
All signal interpreters consist of 2 parts; a pregessor and a post-processor. The pre-processor
interprets the raw capture data and sends thisnnaftion to the post-processor. The post-
processor analyzes this data to generate the diplaatting, colors and framing. We often use
processor and parser interchangeably.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 1



Plug-in Developer's Guide V 1.0

7. Event:
The output from the pre-processor (input to the+pogcessor) is called an EVENT. Events
consist of a time-stamp, some data and possibledtags. These represent higher level
activities than raw signal transitions. Typicaérts will indicate errors in the protocol, startan
stop framing (if part of the protocol), a complefetdd of data or perhaps a single bit of data. The
exact contents of an event vary with each pre-gsme

8. RawData Events:
Similar to events, except the data portion of thene contains the raw channel levels at this
timestamp, rather than processed data from a ps&ipa

9. Field:
The final post-processor outputs a series of fielfinitions. Fields are stored in the signal's
internal state table. A field definition represeatsingle cell of data. It is displayed as a reglita
with its value printed inside. In some serial poatls, the field widths could vary. In others,the
are consistent. In the basic ASYNC interpreterhedmaracter is a field. In the STATE
interpreter, each STATE is a field. In 12C, thare a number of predefined fields of varying
length.

10. Frame:
Some protocols group fields into Frames (someticaied packets). A frame might represent a
complete command or transaction. In other cabegjdta might be arbitrarily grouped into fixed
length pieces for easier viewing. We display a MEAas a series of connected fields with the
first field starting with '<' and the final fielchding with a '>'. In 12C, the frame is delimited b
specific start/stop conditions on the physicaldin®©ther systems might use sync signals or field
counts or timeouts to mark frame boundaries. Fsastart/end conditions are specially tagged/
formatted fields.

Types of Plugins
DigiView supports 3 types of plug-ins; mini, fulhd hybrid.

1. Mini Plugins
Mini plugins use one of the built-in parsers asexarser, simplifying your work. The pre-
parser handles the low level details of extractirgglink level information. Your plugin can
concentrate on higher level issues like formattadging another level of protocol, soft triggering
or filtering. The plugin depends on the pre-passgiplied user options for the basic protocol
configuration. The mini plugin can add additioogtions if needed (see the 12C plugin example)
but can not add new channelselect options. Fanplg if you have a custom protocol
implemented over an ASYNC link, you could write amirplugin based on the internal ASYNC
pre-parser. The pre-parser will extract the ASY®@racters for you (like a UART would).
Your plugin would inspect the characters and lawkybur protocol's commands, parameters and
any framing indications. Your plugin would thersjlay the protocol as you see fit.

2. Full Plugins
A full plugin is based on the RAW data pre-processthe RAW pre-processor simple filters out
all data samples that do not involve a transitioroone of the channels your plugin is monitoring.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 2



Plug-in Developer's Guide V 1.0

It does not provide any user configurable optioAB.user options for the protocol (including
channel-selects) are specified by the plugin. Thgip is responsible for all low level
interpretations of the signal changes. It looksbibtiming, enable levels, clock edges, etc. and
determines what they mean.

3. Hybrid Plugins
A hybrid plugin is based on an internal pre-paligerthe mini-plugin. However, it also specifies
additional channels to watch and assumes all resdipitity for them. In this configuration,
DigiView sends the plugin all of the events gensuldty the pre-parser as well as raw data events
whenever one of the additional monitored chanmalssition. The pre-parser events and raw
data events are properly time sequenced. A pesssid for a hybrid plugin might be to add a
unique framing signal or additional control sign@san existing built-in protocol. For example,
you might be sending ASYNC characters across aduwgdfex bus. Your plugin could monitor
the DIRECTION control line and adjust the displaymatting to differentiate which end of the
link sent the message. The 'HalfDuplex' examplgipldemonstrates this.

Capabilities
Plugins can extend the DigiView application in aner of ways:

1. Modify formatting
The 'echostate’ example demonstrates a functidmgiihpin 24 lines of code. It simply displays
state fields in a different color. This is the mibasic operation a plugin could do; change the
way the data looks. A plugin could also changetusarinted in the field as easily. For
example, it could easily substitute the text 'Adi2éry time it sees the value '0x10' in a particular
field.

2. Add parameters or control signals to an existing potocol
Plugins can extend an existing protocol by additgaecontrol signals or parameters. The
'HalfDuplex' example demonstrates adding a dirediite to the ASYNC parser. This would
extend the ASYNC parser to support a half-duplex (wehere a control signal switches the bus
alternately between IN and OUT directions.) Seweiréhe plugin examples add a 'SHOW
FIELD IDLE' parameter, controlling whether idle jm&ts should be shown between fields.

3. Add Protocol Layers to existing parsers
Protocol layers can be very simple or complex.ime protocol layer might involve just adding
framing. Look at the 'FrameChar' for an exampledds a framing level to the basic built-in
ASYNC parser. Whenever it sees a specific charat®&arts a new frame. It also watches for
an escape character to allow the start-of-frameacher to occur in the data payload. A more
complex protocol layer might include interpretimg ffirst field of the frame as a command and
the balance as command-specific parameters.

4. Add entirely new protocols
Using a full plugin, you could implement new prattscfrom the link level up. You have full
access to everything captured (related to youripjugrou can watch as many channels as you
want and interpret them in any way you want. B@meple, we currently do not have built-in
CANDus interpreter, but it could be implementedgdugin. CANbus is different enough from

12/20/2011 Plug-in Developer's Guide V 1.0 Page 3



Plug-in Developer's Guide V 1.0

the built-in parsers that it would have to be badta full plugin. The plugin would need to do the
async bit timing to extract the link level bits ath@n combine the bits into CANbus specific
fields.

The track2full and full-DAC8045 examples demonstrsimple protocols developed with full
parsers. These particular ones could have beed lesbuilt-in preparsers but we chose to
implement them as full, raw parsers.

5. Analyze the data contents and/or timing
Plugins can evaluate the field values while itasgrating field information. It can generate text
(PARITY ERROR) in place of field values. It caheck protocol specific sequences and print
errors for field values ('ILLEGAL NAK"). Pluginsan verify timing (down to the logic analyzer's
sample rate) and report the results as field values

The ASYNCWD example demonstrates adding 'TIMEOUHIUE to the data stream when it
detects too long of an idle between characters.

6. Control DigiView's run-time behavior
In addition to or instead of printing errors or i information as field values, the plugin can
send control fields to the DigiView applicationftyce a save of this capture to disk, veto any
default save, and/or halt an auto-run sequences alllows the plugin to operate as a soft-trigger,
operating at the protocol level and/or as a filteautomatically sort through a sequence of
captures.

The ASYNCWD example demonstrates generating HAEEBRCED-SAVES or VETO-SAVES
when it detects too long of an idle between charact

Plugin Framework
We provide a template that handles the communiesipwotocol, provides access routines and stubs out
routines for your code. The framework invokes salvealls in your code to status and configure the
plugin and to parse the captured data into protivaaies and fields. Your code then uses access
routines in the framework to send back control data field descriptions.

A plugin is written as a console mode program.sThakes it very language independent, lightweight o
resources and easy to write. There are no DLIckets, pipe handles, byte orders, Windows APIs, etc
to deal with and every language supports consOle lf can be a compiled executable or a script.

We provide a module (CmdParser.cpp) to handle/@ddelf and to handle our communications
protocol. Your plugin code focusses on interpngtthe data and generating formatting instructions.

CmdParser.cpp provides main() and takes controhwie plugin is loaded. It interacts with the
DigiView application, interprets its commands andrfards specific commands and data to routines in
your plugin code. Your plugin then uses CmdParpprsupplied access routines to return field
information to the DigiView application. The sexti'Development Tips' below discusses the provided
example files, project layout and instruction onvito build the plugins.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 4



Plug-in Developer's Guide V 1.0

A complete plugin consists of 3 files:

1. plugin.h (provided)
This include file defines a few globals and propaty the access routines in the framework and
the stubs in your code. It also defines a unidieddata64. We use int64s extensively. This
union allows us to access an int64 as a pair 82mbr an array of 8 bytes, as well as an int64.

2. CmdParser.cpp (provided)
This module handles all communications with theiYdigw application. It parses the commands
and data and forwards them to your plugin codecasied. It also provides access routines your
plugin uses to send back information. We provigedource to this module for your reference,
in case you want to port it to another languageu §o not need to make any changes to
CmdParser.cpp. All of your code goes in the plgiacific file <yourplugincode.cpp>.

Your plugin uses the following routines to commuaéwith the application.

1. Access Routines
These routines allow your plugin to return fieléoimmation to the application. They control
all framing and formatting of the data.

1. Parameters
The access routines all share the following pararaet

1. TIMESTAMP:
This is the time at which the field starts or stopote that timestamps must never
be less than the previous timestamp. They arevatldo match the previous
timestamp in special cases. See the section 'DEipggCommon Errors/Field
Chronology' and 'Development hints/Zero Lengthdsebelow.

2. DATA:
You can supply up to 48 bits of data. This datatsrpreted by the Field Format for
formatting and display. Usually, the data is siymtisplayed as a single number.
However, the Field Format can extract slices @nitges) of the data to display
multiple numbers in a field. It can also specifges to be used as indexes into
lookup tables to print data driven text stringswHbe bits are used is defined
entirely by the Field Formats you specify (seedrlebrmat Syntax below.)

3. FormatlD:

FormatID is an index into the field format list yeupplied in the GetStr call. See
'FIELD FORMATS' in 'GetStrLists' for details.

4. CntlCode:
This is a constant (defined in plugin.h) definingi@h control code you wish to send

12/20/2011 Plug-in Developer's Guide V 1.0 Page 5



Plug-in Developer's Guide V 1.0

1. CNTLHALT
Halts the current Autorun sequence, making theecticapture data the final
capture.

2. CNTLSAVE
Forces this capture to be saved to disk (eveatded by other signals or
autosearches.)

3. CNTLNOSAVE
Vetoes saving this capture to disk.

2. void StartField(int64 timestamp, Data64 data, unsiged char FormatID)
This starts a new field at 'timestamp'. It autori@ates any previous field.
'‘Data’ is interpreted and formatted per the fielarfat specified by 'FormatID’

3. void StartFrame(int64 timestamp, Data64 data, unsiged char FormatID)
This starts a new field and tags it as a startaohé. It auto-terminates any previous field
or frame.
'‘Data’ is interpreted and formatted per the fielanfat specified by 'FormatID’

4. void EndField(int64 timestamp)
This marks the end of a field. Timestamp is thairegntime. This is optional. Fields are
auto-terminated by the next StartField or Startlerarfihe only reason to use this is if
you want to see the field terminated earlier.

5. void EndFrame(int64 timestamp)
This marks the end of a frame. Timestamp is tltgngntime. This is optional. Frames
are auto-terminated by the next StartFrame. Thereason to use this is if you want to
see the frame terminated earlier.

2. Control Routines

1. void SendControl(int64 timestamp,unsigned char CntCode)
Sends the specified control code to the applicatibrmestamp' is currently ignored but
might be used in future versions to log the timéhefcontrol code.
See 'Development Tips->Control Fields' for usagermation.

3. Utility Routines

1. void FindChannelLimits(uint64 mask, uint64 &HighestBit, uint64 &LowestBit)
A utility routine your plugin can use to help woskth raw data efficiently. See 'Data
Masks, pack and findchannellimits' below

2. uint64 pack(uint64 dat, uint64 mask, uint64 HighBit uint64 LowBit)
A utility routine your plugin can use to help woskth raw data efficiently. See 'Data
Masks, pack and findchannellimits' below

12/20/2011 Plug-in Developer's Guide V 1.0 Page 6



Plug-in Developer's Guide V 1.0

3. <yourplugincode.cpp> ( can be based on one of tkegample files)
This is where all of your code goes. It shouldude the plugin.h header file and supply the
functionality for the following 8 routines: Thell enust be defined but most of them can simple
return. Few plugins will need to use all of ther{See 'Development Tips->Plugin Dataflow' for
details on when and why each are called.)

1. void OnLoad()
Called when the plugin is first loaded. If mulg@ignals use the same plugin, it is loaded
only once. This is used for global initializationemory allocation, etc. You might use this
for any memory allocation that lasts for the plugiifetime.

2. void GetStrList(int ID, vector<string> &strl)
Called multiple times each time a signal is creapedbled or its editor is opened. 1D
specifies which string list is needed. These ragisimply fill in 'stI' with the requested set
of strings. To allow maximum compatibility withtfue DigiView releases, your plugin
should return an empty list when it receives atit ibes not understand. There are currently
6 string sets defined:

1. ID 0: Return the plugin description.
These lines are displayed in the signal editoregcdbe this plugin's name, purpose,
copyright, etc. For best results, keep to 4 oreielmes.

2. ID 1: Return configuration options
When the user creates a signal based on your plinggy are presented with a signal
editor dialog to allow them to configure your plagiThese strings describe the
configuration options and their parameters. Ifghe-in is a mini-plugin, these items
are added to the pre-parser's items and this satiight be minimal or even empty. If
this plugin is a full-plugin (based on RAW datdjistsection will include every option
needed to extract and interpret the data (whichméla are being used and for what
purpose, the BAUD rate, clock polarity...)

Each configuration option LABEL in your plugin sHdibe unique. Also, if you are
using one of the built-in pre-parsers, your lalsfisuld not conflict with its labels. The
labels are displayed to the user and are alsofos@uternal reference.
The following documents each type of option edaweailable and its syntax:
1. Check box: syntax: Label,checkbox,default
default is the initial state. It can be 0,1,trulsgayes or no

return value[0] = 1 for true, O for false

2. Radio group: syntax: Label,radio,default,itemO,iem1...
default is the item index to select initially.
itemO,item1... are the options

12/20/2011 Plug-in Developer's Guide V 1.0 Page 7



12/20/2011

Plug-in Developer's Guide V 1.0

return value[0] = selected item index

. Combo box: syntax: Label,combo,default,itemO,iter...

default is the item index to select initially.
itemO,item1... are the options shown in the pulivdo

return value[0] = selected item index

. Integer Editor: syntax: Label,edit,default

default: the contents of the edit box. It can ¥ inore comma separated INT32s

return value[0O] = the first integer in the list
return value[1] = the 2nd integer in the list
... for each integer up to 32 total

. Time Editor: syntax: Label,timeedit,default

default is the initial time in ns

return value[0] = Lower 32bits of the entered ti(imens)
return value[1] = Upper 32bits of the entered tiinens)

. Spinner: syntax: Label, spinner,default,min,max,gep

Default: initial value (must be >= MIN and <= Max
Min: minimum value returned

Max: maximum value returned

Step: step size (spinner snaps to these increjnents

return value[0] = Spinner position/value

. Slider: syntax: Label, slider,default,min,max,step

Default: initial value (must be >= MIN and <= Max
Min: minimum value returned
Max: maximum value returned
Step: step size (spinner values increment bytilise)

return value[0] = Slider position/value

. Channel Select: syntax: Label,chanselect,defaultlue,min,max,showinvert,

showdisable
default: a 64bit mask for the default channel e
min: minimum number of channels the user is allbteeselect
max: maximum number of channels the user is allowestlect

Plug-in Developer's Guide V 1.0

Page 8



Plug-in Developer's Guide V 1.0

showinvert: 1,true, or yes => show the invert optelse hide it
showdisable: 1,true, or yes => show the disabl®omlise hide it

return value[0] = flags.
Bit O is the showinvert setting
Bit 1 is the show disable setting

return value[1] = Lower Int32 of the selection as
return value[2] = Upper Int32 of the selection knas

3. ID 2: Field Formats
Called multiple times each time a signal is crea¢edbled or edited. These describe
how to format and display fields. As you genefadkels in PARSE, you tag each field
with an index into this list to describe to the kggtion how to display and format the
field. You must provide at least one field formasdription.
The general format is: Name,Background Cdtont Color, Display Format as
described below:

1. Name:
Any text that describes this format. This showsruihe TABLE views (when field
names are enabled) and in the search dialogs. Nstmoe&d be unique.

2. Background Color:
Color used to fill the field background in the wéoren view and the table cells. If
left blank, the default signal background coloused. You can use one of the
predefined colors listed below or specify a stadd®GB triplet (808080 = middle

gray).

3. Font Color:
Color used for the field text. If left blank, tdefault signal font color is used. You
can use one of the predefined colors listed belogpecify a standard RGB triplet
(OO0O0FF = RED).

4. Display Format:
Describes what to print in a given field. Can @mta mixture of text and data
slices. A 'Data Slice' defines a range of biterfithe provided data. The full format
looks like: TEXT {T%H:L} TEXT {T%H:L}....
The text portions can contain any printable charaexcept '{','} or'," (we will
probably remove the '," restriction by full release

1. 'TEXT'is an optional text string.
It can contain any printable character exceptr'{}

2. {T%H:L} is an optional data slice. Each part is option.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 9



Plug-in Developer's Guide V 1.0

1. T%'
signifies that this slice selects a string frono@klup table (returned from
GetStrList(5,Ist) where 'T' is the table numbgf. Is omitted, then table O is
used. If 'T%' is omitted, then this is a DATA sliagher than a lookup slice.
The slice defines an int32 rather than a lookupgtr

2. 'H.L

defines a range of bits to extract from the d&ids the highest bit and L is
the lowest bit. If L is omitted, it defaults toethowest bit (0). IF H is
omitted, it defaults to the highest bit possibletfos slice type (L+31 for
data or L+13 for lookups, but limited to 47).

The largest number that we can display is 32bitg.Ié\ny single DATA
slice with a range exceeding 32 bits will produnesgor.

Lookup table indexes are limited to 14 bits. Anygie LOOKUP slice with
a range exceeding 14 bits will produce an error.

3. Some DATA slice examples:
{3:1} = the number defined by bits 3->1
{3:} ={3:0}
{12} = {43:12}
{:40} = {47:40} (limited by highest bit availak)
{3} = {3:0}
{} = {31:0}

4. Some Lookup table slice examples:

{2%47:40} = the string in lookup table 2 at the sut
specified by bits 47->40 (bgtef the data)

{%43:40} = {0%43:40}

{1%3} = {1%3:0}

{4%:30} = {4%43:30}

{3%:40} = {3%47:40} (limited by highest bit aviable)

{1%3} = {1%3:0}

{1%} = {1%13:0}

5. Pre-defined colors
The following (non case-sensitive) color constaats be used in the Background
and Font color parameters:
‘black’,'brown’,'red’,'orange’,'yellow’,'grg'bhie’,'violet','gray’ and 'white'

4. 1D 3: Preparser Name
Tells the application which preparser your pluggeds. Most plugins will use one of the
built-in parsers as a preparser to handle low Ipxaiocol issues (like bit extraction or
clock polarity). Others will need full control. Rjins are responsible for all framing and
formatting so the built-in parser options dealingwhose issues are removed.
See 'Pre-Parsers' below for details

12/20/2011 Plug-in Developer's Guide V 1.0 Page 10



5.

Plug-in Developer's Guide V 1.0

ID 4: Framework Version

ID 5:

Tells the application the minimum Framework verdiois plugin needs. For now, there
is only one version so return '1'

Lookup tables

Optional list of Lookup table (substitution) engidf you are not using lookup tables,
return an empty list.

Each entry defines a single lookup/substitutiomgtr

The general formatis: table number,index,stuigin string as described below:

1. Table Number:

A number between 0 and 31

2. Index:

a number between 0 and 4095 relative to the cutadid

3. Substitution String:

A string of printable characters. Can be any phig character except ', (this
restriction will probably be removed by full releas

4. For optimal performance and resource usage:

The table numbers should be consecutive and start laikewise, the indexes for
each table should be consecutive and start at 0.

e.g..

"0,0,ACK"

"0,1,NACK"

"1,0,RD"

"1,1,wWT"

"1,2,ERROR"

3. void Setlnitltem(unsigned char ID, unsigned char sblID, int value)
Called multiple times immediately before each pawseto set some global parameters

12/20/2011

1.

2.

3.

ID O:

Set Timescale
DigiView uses scaled timestamps in its internabdsdtuctures. This call provides the
scaling factor so you can convert between scatad-tind real-time if needed. Many
plugins do not need to worry about this. See gotien TIMESTAMPS & TIMESCALE
in the development hints section for detalils.

ID 1: First Timestamp

Tells the plugin the timestamp of the very firstreample. This int64 is sent in 2 calls
with subid 0 = LSB and subid 1 = MSB. The firstldmal timestamps are useful for
timing analysis.

ID 2: Final timestamp

Tells the plugin the timestamp of the very last data. This int64 is sent in 2 calls with
subid 0 = LSB and subid 1 = MSB. The first andfitimestamps are useful for timing

Plug-in Developer's Guide V 1.0 Page 11



Plug-in Developer's Guide V 1.0

analysis.

4. void SetCfgltem(unsigned char ID, unsigned char sub, int value)
Called after all Setlnititem calls and before thar®ata call. Called multiple times before
each parse run to set the user selected paranfaténss signal. 'ID' identifies which cfg
items is being set. Itis an index into the comfadions strings you provided in the GetStrList
call (the first item listed is ID=0.) VALUE is argyle INT32. Each type of configuration
object defines what the return values mean. Ibthject requires more than a single INT32
to define it settings, your plugin will receive rtiple calls, with increasing subIDs. See the
section on Configuration Option Syntax for the retualues from each option. See the
SIMPLESTATE example plugin for typical handling.

5. void StartOfData()
Called after all cfg items are set and before thta dtarts streaming. Gives you a chance to
examine the cfg items after ALL of them have beetn make adjustments and any
initializations.

6. void Parse(int64 timestamp,Data64 rawdata)
This is the heart of the parser. DigiView willesam EVENTS (packets of time/data
information) to your plugin through this routin®arse will examine the data and stream back
FIELDS (packets of time/field information) througte access routines defined above. Note
this gets called on the order of 250,000 timesspgral per capture so efficiency is important.

7. void EndOfData()
Called at the end of each parse run for a givemaigGives you a chance to flush any final
field information and do any clean up.

8. void OnUnload()
Called just before the plugin is removed from memdf multiple signals are using the
plugin, it will be called ONCE, when the final sejns disabled or deleted. You might use
this to free any resources allocated in OnLoadQ.NDOT SEND any fields back from this
call. The EndOfData call is your last chance tdlu.

Pre-Processors
The built-in interpreters can be used as pre-psmedor your plug-in. Every built-in interpreter
consists of 2 parts; a pre-processor and a posepsor. The pre-processor handles the link level
protocol extraction. This includes things likeeatding clock edges, honoring enables, shifting duitd
detecting protocol defined start/stop or error ¢oods. The post-parser is responsible for formgtt
and framing the data (when framing is not parhefprotocol). It determines field colors and hiwe t
data is printed in each field. Mini-plugins REPLEGhe internal post-processor. The output (events)
from the internal pre-parser is routed to your gilug Your plug-in's output (fields) are storectie
signal's internal state table. Full plugins aceapt data events and generate fields directlyeffiect,
they replace both the pre-processor and the posegsor.

1. ASYNC
This is sometimes (incorrectly) referred to as B3-8r generally as a 'SERIAL' port. It is

12/20/2011 Plug-in Developer's Guide V 1.0 Page 12



characterized by a BAUD rate setting and a lack olbck signal. Symbols (Bytes or Characters)
of data are sent as a start bit (0), followed bg-aonfigured number of data bits, an optional
parity bit and a stop bit (1). Bits are blindlyngaled at the BAUD rate. The symbol is ‘framed’
by a O start bit and a 1 stop bit. Note that tisis of the term ‘framing' refers to framing a sng|
symbol and is different than our use as a protfvaohe. Each field in a protocol frame would
consist of one or more of these symbols. Them®idefined protocol framing at the pre-
processor level. In essence, this pre-processtiisg like a UART and your plugin acts like the
software/firmware that gathers data from the UARd aterprets it, possibly into higher levels

Plug-in Developer's Guide V 1.0

of framed data.

1. Configuration Options provided by the pre-processor

2. Events

This pre-processor uses event flags to indicatehvbwvents occurred. The data event occurs
at the middle of the start bit time and also inelsidny parity or framing error flags.

Additional parity and/or framing events occur laetheir respective times. In the built-in
post processor, we handle the data event firso(igg any additional parity or framing

errors) and then handle any error events as thayr oallowing us to show each as a separate

12/20/2011

Data
Selects which physical channel to assign to the RAUSs

Baud Rate:
Selects from a list of standard BAUD rates or tisgtom’

Custom Baud (bits/sec):
The BAUD rate to use if BAUD RATE is set to 'usstmm'

Data Bits
Selects the number of data bits in a character

Parity/9bit Address flag
Selects from odd,even,one,zero,non standard [saityngs.
Also allows selection of 9bit addressing mode \aitidl address
field flagged with a 1" or with a '0’

Glitch Filter (% of bit)
Select noise filter setting of none-10% of a bidthi

Sync (skip transitions)
Specifies how many transitions to ignore at the stisthe buffer.
useful for syncing up when capture starts mid-attara

MSb First:
Specifies that bits are received in MSB first orQ&ERY rare)

Plug-in Developer's Guide V 1.0



Plug-in Developer's Guide V 1.0

field at their respective timestamps. Settingfthgs during the data event allows your plug-
in to decide whether to display the corrupt dataair
Event Format:

byte[0] = data (during data event..else ignore)

byte[6] = event flags: (Break,End,Parity,Fram Address,Data)

. Data
Indicates that byte[0] holds a complete data byftee timestamp marks the middle of the
start bit time. NOTE: any parity or framing errassociated with this byte are flagged as
well. They can be ignored if desired because ank errors will be reported later as
independent, timestamped events at their respduaitivienes.

. Address
Indicates the parity bit position matched the udmed '9-bit address mode' level and
that byte[0] holds the gathered address byte. tilestamp marks the middle of the start
bit time. NOTE: any framing error associated witils byte is flagged as well. It can be
ignored if desired because any such error willdported later as an independent,
timestamped event at the STOP bit time.

. Framing Error
Indicates the middle of the STOP bit position was.| The timestamp is the middle of
the stop bit time.
NOTE this reference to FRAMING has nothing to déhvwaur use of the word as defined
in the TERMINOLOGY section above. This is refegito timing framing of the
character. When you receive these framing eritongseans that the baud rate or one of
the other low level parameters is set wrong, ottridwesmitter and receiver (us) are out of
sync.

. Parity Error
Indicates the parity calculation did not matchtiser's selection. The timestamp is the
middle of the parity bit time.

. End
Indicates the timestamp of the end of the chara€igaically used to send an
ENDFIELD type field back.

. Break
Indicates that the line was held low for greatanth character time

2. SYNC

12/20/2011

Synchronous is not really a protocol but a concdtits core, it refers to serial data, strobed in

by a separate clock signal. The data is samplezheror both of the clock edges. There are no
predefined number of bits per field (symbol) otdgeper frame. There are no predefined framing
indicators. The field lengths usually vary witlairirame and are often data dependent. There are
many link-level implementations of serial protocated many higher levels of protocols built on
top of them.

Plug-in Developer's Guide V 1.0 Page 14



Plug-in Developer's Guide V 1.0

The preparser honors the select signal (ignorekslahile disabled/deselected) but ignores the
FrameSYNC and Field signals. If the user enabtesreof these, the preparser simply detects
transitions on the selected lines and reports tioetine plugin.

1. Configuration Options provided by the pre-processor
Clock
Selects which physical channel to assign to the CKO

Data
Selects which physical channel to assign to the RATSs

Select
Selects which physical channel to assign to the BINA
The enable can be disabled if not used

Frame SYNC
Selects which physical channel to assign to the MEAYNC.
This can be used to identify frame limits
The FRAME SYNC can be disabled if not used.

Field SYNC
Selects which physical channel to assign to th& . BIEYNC.
This can be used to identify field limits
The FIELD SYNC can be disabled if not used.

Clock On
Selects which edge of the clock to use to strolmata

Select Level
Selects the active level for the Select signal

2. Events
This preparser can generate more than 1 everttraga It sets 1 or more event flags in data
byte[6] to indicate which events occurred at thiselstamp. It also updates some status bits
in that same byte to indicate the current stataie of the control signals. The event flags
and status levels are defined below:

1. DATAEVENT FLAG (bit 7 : 0x80)
When this bit is set, state data was strobed thistime. The data field holds the
clocked data.

2. SELECTEVENT FLAG (bit 6 : 0x40)
When this is set, the SELECT channel transitionBlde SELECTSTATE tells us if it
went active or inactive

12/20/2011 Plug-in Developer's Guide V 1.0 Page 15



3. SPI

Plug-in Developer's Guide V 1.0

. FrameSYNCEVENT FLAG (bit 5 : 0x20)
When this is set, the FrameSYNC channel transitlonehe Frame SYNCLEVEL tells
us the new level

. Field SYNCEVENT FLAG (bit 4 : 0x10)
When this is set, the FieldSYNC channel transitibn€he Field SYNCLEVEL tells us
the new level

. SELECTSTATE (bit 2 : 0x04)
The current state of the select signal. 1 => emhl@le> disabled (regardless of the logic
level on the physical channel)

. Frame SYNCLEVEL (bit 1 : 0x02)
The current logic level of the FrameSYNC chanrniéhe preparser assumes nothing
about the meaning of this signal so it passesc¢h&hblogic level to you

. Field SYNCLEVEL (bit O : 0x01)
The current logic level of the FieldSYNC chann&he preparser assumes nothing about
the meaning of this signal so it passes the atdgal level to you

SPlis a specific synchronous protocol. It usgasse data-in and data-out lines and a common
clock. Select is optional. SPIis very commomnicrocontrollers due to the simplicity of the
hardware implementation. This preparser handles gmmmon variations (including 2 phase
clocking). To avoid the ambiguity of choosing a teass. slave viewpoint, the data lines are
often labeled: MISO (Master-In-Slavae-Out) and MI@@aster-In-Slave-Out). The select signal
is called Slave Select (SS). Since the data ssem® a common clock, enable and field length,
their fields share a common timestamp. The prepaends the timestamp and both fields
(MOSI and MISO) in each Data Event.

1. Configuration Options provided by the pre-parser

12/20/2011

Clock Channel
Selects which physical channel to assign to the CKO

MOSI Channel
Selects which physical channel to assign to the M2

MISO Channel
Selects which physical channel to assign to theQvdiata

SS Channel
Selects which physical channel to assign to SSd€sdalect)

Clock MOSI On
Specifies which clock edge to use to strobe in M@xga

Plug-in Developer's Guide V 1.0 Page 16



Plug-in Developer's Guide V 1.0

Clock MISO On
Specifies which clock edge to use to strobe in Mtfata

SS active level
Specifies the active level for the SS (slave sgkgnhal

Field Idle Timeout (0 to disable)
A new field is started if no new bits are seenrfmre than the specified time.
Set to 0 to disable.

Skip Bits (to sync)
Specifies how many bits to ignore at the starheftiuffer.
Useful for syncing up when capture starts mid-field

Field Length (bits)
Specifies the data field length from 4 to 24 bits.

2. Events
Event format:
bytes[2-0] = MISO data
bytes[5-3] = MOSI data
bytes[6] = event flags
The preparser uses event flags to indicate whiehtswoccurred. Multiple flags (in limited
combinations) can be set at the same time.

1. Data flag: 0x80
Data fields contain a data capture. Can be accoieghéy a Partial flag and/or a SSEN
flag. Will never occur with an End or SSDIS flag.

2. Partial flag: 0x40
Indicates the captured data is incomplete. It weesrupted before gathering the full
specified number of bits (usually by SS going inecbr a timeout). This flag never
occurs without a Data flag; It is a modifier to Data Flag. Your plugin can decide
whether to tag these differently, ignore them eatrithem like normal data.

3. SSEN flag: 0x20
SSEN flag indicates the Slave Select (SS) sigaakttioned to the enabled state. SSEN
transitions can occur alone or with a Data flag.

4. SSDIS flag: 0x10
SSDIS flag indicates the Slave Select (SS) sigaakttioned to the disabled state.
SSDIS transitions can occur alone or with an Ead.fl

5. End flag: 0x08
Marks the end time of a field. The data fieldsmeaningless. Can occur alone or with a
SSDIS flag.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 17



4. 12C

Plug-in Developer's Guide V 1.0

extracts all 12C events including START,STOP,ACK KAAIso sends separate events for
special codes, address, R/W and data fields. Materiaming is inherent in this protocol so the
preparser sends START and STOP events to yourrplugi

1. Configuration Options provided by the pre-processor

12/20/2011

Clock(SCL)
Selects which physical channel to assign to the CKO

Data(SDA)
Selects which physical channel to assign to the BAT

Glitch Filter
Selects the amount of noise filtering. Shouldéeto 50ns for low
speed operation and reduced for faster speed

Skip Bits (to sync partial frame)
Specifies how many bits to ignore at the starhefliuffer.
Useful for syncing up when capture starts mid-frame

Decode Addr 000-0001-d as
Selects between the standard 12C decoding foatldsess range or decoding it as
normal 7 bit devices.

Decode Addr 000-001X-d as
Selects between the standard 12C decoding foatldsess range or decoding it as
normal 7 bit devices.

Decode Addr 111-11XX-d as
Selects between the standard 12C decoding foatldsess range or decoding it as
normal 7 bit devices.

Decode HS Master Codes as
Selects between the standard 12C decoding foatldsess range or decoding it as
normal 7 bit devices.

Decode 10bit Codes as
Selects between the standard 12C decoding foathdsess range or decoding it as
normal 7 bit devices.

Truncated fields

Specified whether to show truncated/partial fieddsiot. 1 bit truncated fields
common and unavoidable so the options include sigpanly if > 1 bit.

Plug-in Developer's Guide V 1.0 Page 18



Plug-in Developer's Guide V 1.0

2. Events

12/20/2011

H

The build in I12C preparser generates 16 eventsingle event is sent at a time. The event
code is placed in byte[6] and is encoded as shalowb

START (0)
Generated whenever the start condition is detamtetie bus.

START-BYTE (1)
Generated when the first byte holds the speciat:c0000 0001. Under normal
operation, the plugin should expect to receive &NAent followed by a Repeated start
(Sr) event and then any normal ADDRESS event.

ADDRESS (2)
Generated for all general 7 bit addresses in teeliiyte. byte[0] contains the entire 8 bit
value of the first field. This includes the 7 &ddress in the upper 7 bits and the
direction bit in the LSB. One would normally igedhe direction bit and just grab the
address at this point. A DIR event will follow stig to timestamp the direction bit. It
will include the same data[0] as this call, allogiyou to handle the address and/or
direction in either/both calls.

GENERAL-CALL (3)
Generated when the GENERAL-CALL code ( 0000 006@)atected in the first byte.
Under normal operation, the plugin would then expececeive an ACK event followed
by the general-call sub code in a DATA event.

CBUS (4)
Generated when the first byte contains the CBU® ¢6600 001X). Following this
event, the preparser ignores all bus activity tn8TOP condition is detected. The
plugin will receive a STOP event when the CBUS\watgticompletes.

HSMASTER (5)
Generated when the special HSMASTER code (0000 XX ¥etected in the first byte.
The XXX is the master's code. Data[0] containsftitie8 bit code. Under normal
operation the plugin would expect this to be fokmlby a NAK event, a repeated start
event and then a normal 7bit address event. Highdoperations remains in effect until
a STOP event is received.

RESERVED (6)
Generated when an address within the 2 reservegsas detected in the first byte.
data[0] contains the address and direction bit.IR Bvent will follow with direction
bit's timestamp and the same data.

10BITADDR (7)
Generated when the special 10Bit Code (1111 0XX¥gtected in the upper 7 bits of the
first byte. Notice the XX bits are the upper Zhof a 10 bit address. The remaining 8
bits come from the next byte or are assumed franctmtext. The pre-parser does not
look at the direction bit, the next byte and/or pinesence of a Repeated start to decode

Plug-in Developer's Guide V 1.0 Page 19



Plug-in Developer's Guide V 1.0

the actual 10 bit address. It simply reports thection of this code. Of course,
additional events will follow to report DIR, datadastart/repeated starts so that a plug-in
could determine the full 10 bit address just amaesdevice would.

9. DIR (8)
Generated for the Direction bit. The LSB of dajaf@icates the bit value; 1=> Read,
0=> Write. The upper 7 bits of data[0] contain Tt address this DIR event refers to.
It can be ignored as it was sent to the ADDRES Sitevarlier.

10. ACK/NAK (9)
Generated for the Ack/Nak bit. The LSB of dataf@@]icates the bit value; 1=> NAK,
0=> ACK

11. DATA (10)
Generated at the start of each byte of data ipaéyoad. data[0] contains the data.

12. STOP (11)
Generated whenever the stop condition is detectetieobus.

13. Truncated (12)
Generated when a partial byte of data was received.

14. RESTART (13)
Generated whenever the start condition is detemetie bus WITHOUT a preceding
STOP condition. This is called a Repeated Start.

15. FIELD-IDLE (14)
Generated to timestamp the end of a byte of ddtaally used to allow display of idle
periods between the last data bit and the ACK.NAK b

5. STATE
Sends the data captured at each clock edge aeah Also send SELECT and SYNC events (if
defined). The preparser honors the select siggab(es clocks while disabled/deselected) but
ignores the SYNC signal. If the user enables G channels, the preparser simply detects
transitions on that line and reports them to thugiol.

1. Configuration Options provided by the pre-processor
Clock Channel
Selects which physical channel to assign to the CKO

Data Channels
Selects which physical channels to assign to th& ®Bus

Enable Channel

Selects which physical channel to assign to the ENA
The enable can be disabled if not used

12/20/2011 Plug-in Developer's Guide V 1.0 Page 20



Plug-in Developer's Guide V 1.0

Frame SYNC Channel
Selects which physical channel to assign to the MEAYNC.
This can be used to identify frame limits
The FRAME SYNC can be disabled if not used.

Clock On
Selects which edge of the clock to use for strolingata

Enable Level
Selects the active level for the Enable signal

2. Events
This preparser can generate more than 1 evertiraga It sets 1 or more event flags in data
byte[6] to indicate which events occurred at timsetstamp. It also updates some status bits
in that same byte to indicate the current statoaie of the control signals. The event flags
and status levels are defined below:

1. DATAEVENT FLAG (bit 7 : 0x80)

When this bit is set, state data was strobed thistime. The data field holds the
clocked data.

2. SELECTEVENT FLAG (bit 6 : 0x40)
When this is set, the SELECT channel transitionBide SELECTLEVEL tells us if it
went active or inactive

3. SYNCEVENT FLAG (bit 5 : 0x20)

When this is set, the SYNC channel transitionede $YNCLEVEL tells us the new
level

4. SELECTLEVEL (bit 2 : 0x04)

The current state of the select signal. 1 => emhl@le> disabled (regardless of the logic
level on the physical channel)

5. SYNCLEVEL (bit 1 : 0x02)

The current logic level of the SYNC channel. Thegarser assumes nothing about the
meaning of this signal so it passes the actuat llayel to you

6. RAW

Sends an event for the very first and last datgptesras well as any time any of the plugin's
defined channels transition.

1. Configuration Options provided by the pre-processor.
NONE. The plugin takes full responsibility for gifging all needed parameters/options.

2. Events
Every event is a RAW DATA event. The data paramebatains a snap-shot of the data
channels at the timestamp. Your plugin uses thekengeturned from channel-select objects

12/20/2011 Plug-in Developer's Guide V 1.0 Page 21



Plug-in Developer's Guide V 1.0

to extract the pieces of data you are interested in
Development Tips

1. Plugin Dataflow
Each time the data changes (from a new captur@adirig a previous capture), Each defined
signal parses the data into an internal state talibe used by all search, export, print and dyspla
routines. Signals that use plugins, stream tha abugh the plugin before storage.
Multiple signals can use the same plugin. Therefeaeh signal sends its configuration to the
plugin before each parse run. The configuratiems are defined by the parser and
independently selected by the user for each signal.

1. On Signal Create
When the user defines a new signal, the first éhb& makes is to select the signal type.
They are presented with a list of signal types ith@tide our native types (bus & boolean),
our built-in parsers and all of the plug-ins founaur plug-in directory.
If the user selects a plug-in the following happens
- the plugin is loaded into memory if it is noteddy loaded
- the plugin's OnLoad() routine is called if it svaot already loaded
- the plugin's GetStrList is called once for eatinglist
- the user is presented with a signal editor diatoconfigure the signal
- the user's selections for THIS signal are stored

2. On New DATA

Each time the capture data changes, the followappéns:

- the plugin's Setlnititem is called multiple ti;® set some globals

- the plugin's SetCfgltem is called multiple timtesconfigure the plugin
with the user's settings for THIS signal

- the plugin's StartOfData is called to allow fipaeparations

- Data events from the preparser are streamdtetpltigin's Parse routine.
Parse uses calls to SendField to stream backifitormation

- When all of the events have been sent, the pligndOfData is called

- If multiple signals are using the same plugtire, above sequence will be
repeated for each signal in turn (using thataig specific configuration
and the resulting event stream)

3. On Signal Disable
Anytime a signal is disabled, if it is the lastrsadjusing the plug-in, the plug-in's OnUnload
is called and then it is unloaded from memory. Hesveits configuration is remembered.

4. On Signal Delete
Anytime the signal is deleted, if it is the lagirgl using a plug-in, the plug-in's OnUnload is
called and then the plug-in is unloaded from memory

5. On Signal Enable
Anytime a signal is enabled, it is loaded into meyras described above but its editor is not

12/20/2011 Plug-in Developer's Guide V 1.0 Page 22



Plug-in Developer's Guide V 1.0

invoked. The stored configuration is used. A catgbarse cycle is run as described in On
New Data.

6. On User changing configuration items

Each time the user changes a configuration optiothé signal editor), a complete parse
cycle is run as described in On New Data. Thiggimmediate feedback about the effect of
their selection.

2. Streaming and Context

12/20/2011

It is important to realize that data is streamegaiar plugin and it is expected to stream back its
data. Your plugin will not have random acceshdata or even know how much data it will
receive. Since your plugin is sharing the systath wcouple dozen other plugins, you do not
want to absorb the data into an internal arraycgss it and then send back your results. This is
very inefficient in resource usage and is slowe Phugin must process a single piece of data at a
time and immediately return. This requires a eemaindset during development.

The plugin must maintain its state in the protogblle parsing so that it can interpret each piece
of data in context. The example 'RAWSTATE.CPPSwsatic variables to remember the current
state of the clock and enable lines. These am fosedge detection. In each parser() call, it
examines these variables to see the previousditite lines and compares them to the current
state to detect transitions. Before exiting, idaies the clk_was and en_was variables to provide
context for the next call. This is a typical weynaaintaining simple context information.

This works in simple parsers, but in more complassprs (like protocol parsers), you probably
need to save more than line level context; you mékd to save your protocol context (like 'I'm
waiting for the sub-command to command 5'). Fameple, it might receive the first byte of a
frame and interpret it as a command. It can priylsdnd back a field at this point to print the
command, but it must remember which command wasved so that when the next byte is
received, it will know what to do with it. No douibs meaning varies with which command was
sent.

State machines are very well suited to this taslsingle state variable maintains your current
protocol context. Additional static variables ased to remember significant information (like
the edge detection mentioned above.) For exampiemight be in state ‘waiting for address low
in command all-call'. In this case, you probalityed address-high in a previous state. When
both are gathered, you might send out a singld fiégth the combined value and then move on to
state 'waiting for checksum'. You update yourestariable before returning from each event. At
the start of each event, you look at the stateabéifor context in evaluating the current data.

We are not going to discuss state machine desigrthbre is a lot of information on the web

(search for 'finite state machine design'.) Weaisenple state machine in the 'RawDAC8045'
example.

Plug-in Developer's Guide V 1.0 Page 23



Plug-in Developer's Guide V 1.0

3. Timestamps and TimeScale usage
DigiView uses scaled timestamps in its internaldsdtuctures to eliminate the need to deal with
floating point values. This greatly improves pagsidisplaying and searching performance. For
example, a 400MHz sample rate results in a 2.53w@uton. When we store these timestamps,
we scale the time to a whole number by multiplyingy 2. In this case, TimeScale would be 2,
telling your plugin that all timestamps (to andrfrggour plugin) are scaled 2x. This approach
allows the entire application (including your plag) to work with 64 bit integer time.

Many plugins do not care about absolute time. fidlds generated by the plugin usually use the
timestamp from a particular event. The FIELD titaesp is blindly set equal to the EVENT
timestamp; no need to scale it. In these casescgn ignore the fact the timestamps have been
scaled.

The only time a plugin cares about absolute timeiiss doing timing analysis or an ASYNC
type protocol. In those cases, the plugin hastodmcerned about real-time and must
compensate for the scaled values it receives arsdl ratwrn. You might be tempted to convert
each received timestamp to real-time by dividingyithe TimeScale. Then you could directly
subtract timestamps to measure real-time durafidgren, when you need to send a field back,
you would take the real-time timestamp and multiplyy the TimeScale to return properly scaled
time. DON'T! This results in a lot of needlessating point math and can have a considerable
performance impact.

Instead of converting scaled-time timestamps tbtmeee, you should convert your real-time
parameters into scaled-time. This is a singlegett®peration that occurs once before the data
streaming starts. Then during the parse calls cgminue working with scaled numbers. Many
field timestamps will be set to some timestampikezkefrom an event (no math required).
Anywhere you require calculated times, you caninteger math to calculate a scaled time. This
converts all of the math in the parse-time routitoesitegers. It also confines the usage of any
math at all to the time checks themselves (ratien every received event and every sent field).

Examples:
- If you have a timeout configuration item, theruywould multiply it by the TimeScale before
storing it for internal use. To check timestamgsthe timeout condition:

if ((newscaledtimestamp-oldscaledtimestampgaedtimeout) ///// timed out

- If you have a BAUD RATE parameter, you would indraely convert it to a scaled time
duration: ScaledBitTime = (1/baudrate)*TimeScale.

TimeScale usage is demonstrated in the AsyncWD pbam

4. Future Compatibility
To make your plugin as compatible as possible fithre framework releases, you should:
- Return empty strings for any GetStrList call ydmnot understand.
- Fully decode the ID and SUBID in SetCfgltem aredl§itltem calls.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 24



Plug-in Developer's Guide V 1.0

- Do not modify the CppCmdParser.cpp file

5. Data masks, pack and FindChannelLimits

The user is free to assign any channel(s) he wargsignal. They do not have to be
consecutive. In fact multi-bit signals (like busde not even have to be contiguous. For
example, a 4 bit bus could be assigned to cha®@/281 and 32. The only rule is that the bits
are ordered by their channel numbers. The lowesteel number assigned is the LSB of the
bus. One signal's channels can be interspersadttier signal's channels. Mini plug-ins do not
have to worry about this as the pre-parser normsilize data before sending it in an event. It
does this by packing the defined bits togethertard shifting them to bit 0. In this example you
would receive a 4 bit bus using bits 0-3 of theadald in the event.

Full and Hybrid plugins can define channel-selgattans of their own to allow the user to assign
additional channels to the plugin. When you ussé¢hyou will receive RAW DATA events
whenever ANY of your assigned channels transitigour plugin must then extract the bits of
interest and normalize them for your own use. Taméwork provides 2 routines to help with
this:

1. uint64 pack(uint64 dat, uint64 mask, uint64 HighBit uint64 LowBit)

This does the data extraction, bit packing andislgiheeded to normalize a given signal's
data. You pass the signal's data mask (returioed thhe channelselect configuration option)
and the current raw data sample. It returns tpeads bits, packed together and 0-bit
justified. The remaining parameters are the highed lowest set bits in the data mask.
These should be pre-calculated from the data n@NKE during initialization. Since pack
is called hundreds of thousands of times pre sigeatapture, performance is improved by
pre-calculating these limits and then having thekpautine limit its work to this range.

2. void FindChannelLimits(uint64 mask, uint64 &HighestBit, uint64 &L owestBit)

This is an optimization helper. During configuaatj you can use this to pre-calculate the
highest and lowest bit positions used in a dats&kma@sese are then passed to the pack
routine each time you need to extract a given $gydata. You pass the datamask (from a
channel select option) and references to the HiBltemnd LowestBit variables.

6. Fields

The Field is the smallest unit of information yglmgin can display. It might be derived from a
single bit (ACK/NAK, Rd/Wt), multiple bits or evemultiple bytes/symbols/characters. For
example, you might emit a field called 'SYNC' whesreyou see 10 or more 0x55 in a row or an
extended quiet period. It's up to you. A field &at the indicated timestamp and extends until
the next field is received.

7. Zero Length Fields

12/20/2011

Zero Length Fields are normal fields except thigirtsand end times are identical. Normally, we
display a field such that it stretches from thetitine field began to the point it completed (last b
for example). ASYNC characters have very deterstimstart (middle of start bit) and end
(middle of end bit) times. Sync fields do not haneling times. For SYNC signals, we usually

Plug-in Developer's Guide V 1.0 Page 25



Plug-in Developer's Guide V 1.0

show the field as stretching from the field's fiogtto its last bit, implying that all of these®i
make up the field. But how do you display a ortdibid where the first bit IS the last bit? This
is a zero length field. We chose to show the feedstarting at the given bit time and stretching
just long enough to allow us to print the fieldsdue and then terminate it. Its closing point is
NOT tied to a timestamp. We are labeling a pairtime; not a timespan.

Another use for zero length fields is in state algn Sometimes we like to think of states like a
receiving latch sees them; when the state clocisiians, the latch updates and holds the state
value. In this case, we simply start a new figdhetime the clock transitions. Each state is
displayed from its starting time until the nextdistarts. Another way to view states is that we
want to see the state value AT the clock edge bat evant to imply that it holds until another
strobe. In this case, we could use zero lengttisi® label each transition with its value at that
instant. We would make StartField() call at theckltransition time and then an EendField() call
with the same timestamp. Several of our buildarsprs and the examples demonstrate this with
the 'show idle' options.

8. Frames

A Frame is a grouping of fields. Not all protocolsother parsers will generate frames. In some
cases, there is no inherent framing of the data;jitst a stream of data. For example, the output
from an A/D converter is a series of measuremenkere is no ‘first measurement or other
grouping. In this case, you might choose to fraineen into chunks of 16 readings each for better
readability when displayed in tables. But in gehelere is no real framing. For this example, a
plugin could generate all fields with StartField§)ls. In another example, assume this mythical
A/D converter converted 4 channels of data, ea¢tirm In this case, there is a natural framing
of 4 readings in each group. Your plugin woulddsd#re first reading with a StartFrame() call
and the next 3 readings with StartField() callsieif it could optionally generate an EndFrame()
call to terminate the frame if you wanted to seeHDime before the next frame. Each field
could use a different field format to name thedseeCH1,CH2,CH3 and CH4. This would enable
you to use searches to find things like: 'Findaanie in which CH3 < 0x59 and CH4 > 0x55'.
Framing affects waveform display formatting, taldé formatting and search capabilities.

9. Control Fields: Soft Triggers and Filtering

12/20/2011

In addition to the various display fields, the ptugan send back control fields. Controls fields
allow the plugin to HALT an autorun sequence andfortrol whether the current capture should
be saved to disk.

Each capture can be saved to disk. Plugins amdsaarches can control whether a particular
capture will be saved or not. This allows themadbas filters to ensure interesting captures are
preserved for later inspection or that unintergstines are excluded. You might use these
controls instead of HALT controls to capture mu#éipoft-triggers. There are several settings in
the acquisition settings to control the maximum beanof captures saved to disk, the amount of
disk space to use or preserve and whether we sawd+robin or halt when a limit is hit. All of
these settings are honored during any capture save.

Plug-in Developer's Guide V 1.0 Page 26



Plug-in Developer's Guide V 1.0

Whether or not a specific capture is saved to @iglontrolled by the following logic:
- If any plugin or auto-search object issues REBSAVE command, then SAVE
- else if any plugin or auto-search object issu®ETOSAVE request then do NOT SAVE
- else if the default setting (acquisitions op#ipis set to SAVE, then SAVE
- else do NOT SAVE.

The save/veto controls operate independently oHRET command and independently of
whether we are doing a single capture or runnireuto-run mode. You can halt and save for
example. Refer to AsyncWD.cpp for an example.

1. AUTORUNHALT
During auto-run sequences, the software will amptare and transfer data continuously
until it receives a HALT command from a plugin at@search or the user presses the halt
button. This allows plugins and auto-searchest@s soft triggers. They can look for
conditions that can not be detected with the harewragger circuits (like protocol level
events or duration measurements beyond the hardinaelimits) and halt the acquisition
so that the interesting event is visible on theacr

It is important to understand that although safigers can ‘trigger' on very high level,
complicated events, they differ from hardware teiggin that they are not guaranteed to
capture one-time/infrequent events. They capturefer of data and analyze. It is does not
contain the trigger condition, it fetches anotheifdr until if finds it. This means that the
target activity that occurs between fetches is negen. However, if the trigger condition
repeats, you will eventually catch it. The auto-sequence combined with an auto-search or
a plugin using the HALT control code, allows youstart DigiView capturing and walk

away. If it ever captures your soft trigger cormahif it will halt on that capture so that it is on
the screen when you return.

2. FORCESAVE
A FORCESAVE command from any plugin or auto-seareér-rides all VETOes and the
default setting and saves the current capturesta di

3. VETOSAVE
A VETO command from a plugin or auto-search reqqitsdt the current capture NOT be
saved. This over rides any default save settithgwever, it is over-ridden by any
FORCESAVE command from any plugin or auto-search.

10. Finding the Plugin Directory
All of our per-user files are placed under 'My Dom@nts'. The file system location of 'My
Documents' varies under different versions of Wimslobut can be accessed by DBL-clicking on
the 'My Documents' icon on the desktop or seleatifrpm the START menu. The plugin

12/20/2011 Plug-in Developer's Guide V 1.0 Page 27



Plug-in Developer's Guide V 1.0

directory is in located at: <My Documents>\Tech®DigiView\Plugins

NOTE: Do not place anything except your plugin's@axable (and optionally its help file) in the
plugin directory. EVERYTHING with an executabletemsion or a file association (except *.rtf
files) found in this directory is added to out glugist. We can not determine if it is a plugin
until we try to load it at signal creation timeorfFexample, a *.doc file is probably associated
with WORD. We would add it to the plugin list. yibu create a signal using this file, we will
attempt to launch the file (which would launch WORery time we capture data. Likewise,
your plugin source would probably launch your cdepi

11. Examples

We provide a number of plugin examples to get yaued. You can develop plugins with the
language/compiler of your choice. All exampleseaveeveloped with the freely available
Microsoft Visual Studio Express 2010 tools. Wesdhthese tools for the examples because they
are free and functional, ensuring you COULD devgllygins without additional expense. It also
ensures that you start with known, functional exsipYou can download the Visual C++
Express or Visual Studio Express 2010 from:
http://www.microsoft.com/visualstudio/en-us/prodi2010-editions/express

The example source and project files are providea AIP file and can be found under the
DigiView install directory. You should unzip thiike into a working directory in your user files
area (NOT under the DigiView install directory ad@T under <My Documents>/TechTools/
Plugins).

1. Examples structure

We created a 'solution' (CPPExamples.sln) contgialhof the example projects. This is the
file you should launch from the examples root divegz. Each example project and its source
is placed in a sub directory. The examples alltheesame CmdParser.cpp and plugin.h files.
These are placed in the examples root directdrlye plugin projects include the ../
cmdparser.cpp and ../plugin.h files as well asetk@mple specific source file. NOTE: the
CmdParser.cpp file handles all of the interactiatthwhe main application. We included its
source as a reference for porting to a differemglage. There is no need for you to modify
it. All of your code goes in the project speciiie.

2. First Build

When you first launch Visual Studio, press F7 tate executables for all of the examples.
The results will be found in the <examples rootHDg directory (NOT in each project's
debug directory).

3. Descriptions

12/20/2011

The examples are not production ready code. Treeingended to demonstrate how to write
plugins. As such, they focus on clarity more thampleteness. Additionally, some of them
were tested with manufactured data. For exampéeTthck2 plugin is written from a
specification and tested with generic SYNC signalife did not actually test it against
captured credit card swipes. The point is thade¢hexamples are focused on demonstrating

Plug-in Developer's Guide V 1.0 Page 28



Plug-in Developer's Guide V 1.0

the mechanics of writing plugins. It is very likalyey would require additional modifications
for actual use but provide a solid, working baselin

. Echostate

A minimal, yet functional plugin in 24 lines of ced It is based on the STATE pre-
parser. It simply prints each state in YELLOW.

. SimpleState
A mini plugin based on the STATE pre-parser. Destiates adding a few simple user
options, performing framing and simple formatting.

. RawState

A full plugin implementing a basic state parseenidnstrates parsing raw data events,
edge detection, and use of FindChannelLimits arc#(pa

. 12CBase

A mini plugin based on the 12C pre-parser. It iseaact replacement for the internal
post-processor. It demonstrates using multipld fiermats, lookup tables, framing and
zero-length fields. This is a good starting pdantimplementing higher level protocols
or project specific substitutions (addr 0x5 = 'DAA"U3'...).

. FrameChar

A mini plugin based on the ASYNC pre-processomriSta new frame whenever a
specific character is received. Uses a specitias character to allow the start-of-frame
character to appear in the payload.

. HalfDuplex

A hybrid plugin based on the ASYNC pre-procesdbspecifies a new signal

(Direction) to watch. The Direction line determsnghich end of the bus is sending.
The plugin modifies the field formatting to indieatvhich end of the link sent the data. It
also starts a new frame each time the bus chamgesions.

. AsyncWD

A mini plugin based on the ASYNC pre-processofaddition to formatting and printing
each ASYNC character, it looks for excessive buldene. If the time between
characters exceeds the user specified value cesa save of this capture, and/or halts
any auto-run sequence. Demonstrates use of TireSedculating timing, and use of
control fields. Also shows inserting non-data retafields into the data display; very
useful for auto-searches.

. Track2-full

12/20/2011

A full plugin to decode track 2 from magnetic stegrds (like credit cards).
Demonstrates channel extraction, edge detect, abiagnel invert option, parity
calculation.

Plug-in Developer's Guide V 1.0 Page 29



Plug-in Developer's Guide V 1.0

9. SPI-DAC8045
A mini-plugin based on the SPI pre-parser. Thit@mizes the SPI parser to decode the
data sent to a Nation Semiconductor DAC8045S08&mdanstrates use of multiple data
slices and lookup tables to do in-place data decpdit is less pretty than a full decoder,
but is still very functional and easy.

10. RawDAC8045
A full plugin to parse the Nation Semiconductor DB@35S085. Demonstrates edge
detection, framing, idle fields, lookup tables andintaining context through static vars
and a state-machine.

4. Creating your own project
To add your own projects to this solution:

Select View->Solution Explorer (if it is nasible)

Right-click on the first line (Solution 'CPP&xrples....)

Select Add New Project

Select Win32 Console Application, enter agcbpame and press OK
Select NEXT and select Empty Project thersfini

Right-click on the resulting project (in satuts explorer)

Select 'Add new item'

Select 'C++ file' and give it a name (sampragect OK)

9. Right-click on the project again and Selectd/&xisting item’

10. navigate up 1 directory and select CmdPargeaog plugin.h

11. Copy one of the examples files into your nde/tlh use as a base line.
12. Do a test build and you should have a functiphagin

13. Modify to suit.

5. Final Build
When development is complete, change the projetdtgioation from '‘Debug’ to 'Release’
and do a final build. The resulting files will beaaller and faster. The release versions will
be placed under 'release’ instead of ‘debug'.

©ONo Ok whE

6. Runtime DLLs
The development machine will have all DLLs needwdlie debug and the release versions
you produce. If you move the plugins to a machvtbout the Visual Studio tools installed,
it will not have the debug DLLs and might not hakre run-time DLLs. You can fetch the
run-time DLLs from the Microsoft download site:
http://www.microsoft.com/download/en/details.aspgpthylang=en&id=5555

12. Documenting your plugin
You can document your plugin's configuration opgi@md behavior by placing a TEXT or RICH-
TEXT (rtf) formatted file in the plugin directoryGive the file the same root name as your plugin
and an .rtf extension (myplugin.exe uses mypluti)n.tJse the .rtf extension even if the file is
plain-old-text. You can use Wordpad or OpenOfficereate RTF files. Of course, notepad can

12/20/2011 Plug-in Developer's Guide V 1.0 Page 30



Plug-in Developer's Guide V 1.0

create text files. The built-in viewer does ngpgort advanced features like embedded graphics.
Stick to stylized text.

When the user is editing the signal's configuratiptions, they can press the help button to view
your document. This is a good place to reminduther (or yourself) what the plugin does, what
the options do, or anything they should do or ayd sure to select rising edge clock' or ‘we
ignore SYNC settings for now").

13. Debugging Tips

1. Enable/Disable

Each time you recompile your plugin and wish td teyou need to copy it to the plugin
directory. If DigiView is still running and youda plugin is still in use, Windows will not let
you over-write it. To release the old version, yaed to do one of the following:

- shut down DigiView, copy the plugin, restart Diggw

- delete the signal using your plugin, copy the péwgin, recreate the signal

- disable the signal using your plugin, copy thespéugin, then enable the signal

The disable/re-enable is the best. It is fastea®sy and still preserves all configuration items.
You can disable/enable the signal from the Sigrediriitions tab in the project settings
window or from the signal's configuration editohelsignal's editor can be opened from the
Signal Definitions tab or by clicking on the sigmame in the waveform view.

NOTE: If you use the enable/disable checkbox frbedignal editor, be aware that any
changes you made to the plugin's configurationoogtiwill NOT be reflected in the editor
until it is closed and reopened. Also, anytime yoake changes to any of the configuration
option definitions, you should check your settingghe signal editor. If you change the
option name/label, it will be treated like a newtiop and set to its default settings. Also, we
store configuration as indexes into the options yavide so if you change some of the
parameters, we could be selecting a differentrggtiow.

2. Avoid enabling more than one signal at a time thatises your plugin

When multiple signals use a single plugin, DigiVimads a single instance of the plugin into
memory. DigiView will not unload the plugin untillA signals using it have been deleted or
disabled. It can be annoying to have to disablersé signals each time you update the
plugin. Also, each signal will attempt to use fegin making it difficult to track exactly
which configuration is being debugged. For the sthest, most consistent debug session, it
is usually better to have only one signal enabteadtame that uses your plugin.

3. Task Manager

12/20/2011

If Windows refuses to let you replace your plugiiva new version with a message about
being in use, it means that DigiView is still usihgr it is a Zombie (abandoned.) This
really should not happen but if something goes wenng with the plugin and it stops
responding to the DigiView application, DigiViewds to kill the process. If Windows can
not kill it for some reason, it stays in memory amdl the disk copy is locked.

Plug-in Developer's Guide V 1.0 Page 31



Plug-in Developer's Guide V 1.0

If this happens, first make sure that every sigisahg your plugin is disabled. If that is not
the problem, then open the Windows task managea(lysavailable through cntrl-alt-delete)
and review the Processes list. Find your plugialse in the list, click on it and select 'End
Process'. Ifitis listed multiple times, endalthem. Now you should be able to copy over
the new version of the plugin.

4. Searches and Triggers

Search and trigger configurations depend on th&égumation options from your plugin. Any
changes to the configuration items or the fielahfats in your plugin could invalidate the
trigger and/or search settings.

5. Debug option

DigiView includes an Environmental Setting to aspisigin debugging. Setting this option
causes DigiView to modify its behavior as follows:

1. Pauses after loading a plugin
A dialog is presented immediately after loadindugm and starting to communicate
with it. At this point, the OnLoad routine is tbaly user code in the plugin that has
executed. This pause gives you a chance to atdelbugger and to set breakpoints in
your plugin code. Once you select 'OK’, the plugimterrogated, configured and called
to parse the existing capture data.

2. Traps plugin communication timeouts
All interaction with a plugin is guarded with a @cend watchdog timeout. Normally, if
the plugin does not respond to a command or aleswrbgh data to allow new
commands in that amount of time, an error is geadrand the plugin is unloaded.
When debugging support is enabled, a timeout digl@gesented rather than unloading
the plugin. If you select 'CONTINUE', the timereset and the operation is retried.
This allows you to set breakpoints and single-gtap code without DigiView Kkilling
your process. It also means that once you s&€TINUE', DigiView will pick up
where it left off rather than starting over.

6. Streaming and Buffering

12/20/2011

The communications between the DigiView applicaémid your plugin use overlapping,
streaming data packets with FIFO buffering in bditections. Once you hit a breakpoint in
your code, and DigiView displays a timeout dialggy could have several hundred received
events queued up for processing. Likewise, youdcsend several hundred field definitions
back to DigiView before filling up the queue. Tineplications are that once you hit a
breakpoint, you could process a lot of data belfiangng to dismiss the timeout dialog.

Eventually you will run out of events to processyou will fill up your TX queue and the
plugin will hang in the CmdParser portion of thefgate, attempting to communicate with

Plug-in Developer's Guide V 1.0 Page 32



Plug-in Developer's Guide V 1.0

the DigiView app. If this happens, simply dismilse timeout window so that DigiView can
process its end of the data and the plugin wilticor. If you were single stepping or you hit
another breakpoint, DigiView will timeout and diaplthe dialog again.

7. Common errors

12/20/2011

1. Configuration string syntax

Fortunately, DigiView does extensive error checkfigll of the configuration strings
when the plugin is first loaded. Any errors aneared and the plugin is unloaded. Most
error messages point to the specific field witlia specific string with the error.
Debugging this portion is usually pretty easy.

2. Field Chronology

Once the plugin fully loads, the most common probis getting fields out of sequence.
If your plugin ever sends back a field with an eldmestamp than the previous field, an
error is reported and the plugin is disabled; nwetiravel allowed. However, you can
generate back-to-back fields with the SAME timegiamsome circumstances. The
following sequences are allowed to have the samestiamp:

- StartFrame or StartField -> EndFrame or EndFiéiéro length field)

- EndField -> EndFrame (EndFrame over-rides)

- EndFrame -> EndField (EndFrame over-rides)

- EndField ->EndField (2nd one ignored)

- EndFrame -> EndFrame (2nd one ignored)

3. Unexpected formatting

All formatting is controlled by your SendField alind the field formats you specify. If
you add or delete field format specifications te #tring list, it will throw off any
references to them. Using enums (as opposedng gsi.push_back() calls and hard
coded indexes) as demonstrated in the examplesagoag way toward eliminating
these mistakes. As a bonus, it makes the code readable and maintainable.
However, using enums and direct indexing makeasy €o miss/skip an entry in the
stringlist. These empty strings get convertedtempty>'. Generally, the application
will complain about 'entry x has too few parametesmpty>'

If some of your lookup table values are not prigtih could be due to a reference to an
undefined table or an undefined index into a talié course, it could also be due to
specifying the same color for the background aeddadnt :)

. Ignoring data.bytes[7]

Data.bytes[7] in the parse() calls holds a codedbacribes the type of event we are
receiving. 0x90 means RAW DATA event and 0x80 mgzarser data event. We
generally ignore the value of data.bytes[7] ingélkamples. This is OK because the
framework guarantees that mini plugins will nevereaive raw data events and full
plugins will never receive parser data events. stantly checking would be a waste of
time. Only hybrid plugins receive both types oéets and need to differentiate between

Plug-in Developer's Guide V 1.0 Page 33



Plug-in Developer's Guide V 1.0

them.

If you take a mini or full plugin example and conviéto a hybrid, then forgetting to
gualify on byte 7 will cause total confusion. $kee 'HalfDuplex' example to see how a
hybrid plugin handles the event type code.

8. Logging

DigiView does not currently provide any type of ¢igg facility for plugin debug. However,
your plugin has full access to the PC so it couddhte log files of its own. If you want the
log to cover the lifetime of the plugin, you cowden a log file in the OnLoad call and
ensure it is closed in the OnUnload routine. Ifi yeant it to log a single capture parse, you
could open/close it in the StartOfData and EndOéDatitines. Keep in mind that any
logging from within the parser routine could generalot of data and could have an impact
on DigiView's performance. A low-impact form ofgiging is to store significant events in
memory and then dump them to a file on EndOfDaba.example, you might store the last
dozen events and fields in memory. When parsitgmsplete (or fails), you could dump
them, along with some of your current state (bitaber, field count...) to disk.

9. Performance and stability

Keep in mind that your plugin becomes a part of@igView application. Its performance
and stability affects the entire application. Ayaiven time, there can be dozens of plugins
operating. Also, each plugin is called to pargerdw data each time new data is captured.
The plugin's parse() routine is very performancestgire. It can receive hundreds of
thousands of calls per data capture, per signal.

DigiView is fairly tolerant to plugin lockups ora&shes. The plugin is loaded as a separate
process. All communications with it use separateads, timeouts (about 2 seconds) and
large FIFOs. If the plugin stops responding, Digiv will attempt to kill the process.
However, killing a process is not always successfadl certainly undesirable. If you are
having problems with plugin lock ups, it could afféhe stability of the DigiView application
or the system.

14. Disclaimers and Restrictions

Use of this Plugin Developer's Kit and the samplgrse provided constitute acceptance of the
following disclaimers and restrictions:

1. No Warranties

This software is provided 'As Is', without any eegs or implied warranty of any kind,
including but not limited to any warranties of mtegiatability, noninfringement, or fitness of
a particular purpose. TechTools does not warraassume responsibility for the accuracy or
completeness of any information contained withis goftware.

2. Limits on Liability

12/20/2011

In no event shall TechTools be liable for any daesa@ncluding, without limitation, lost
profits, business interruption, or lost informafieising out of use of or inability to use this

Plug-in Developer's Guide V 1.0 Page 34



Plug-in Developer's Guide V 1.0

software, even if advised of the possibility of sutamages. In no event will TechTools be
liable for loss of data or for indirect, specialcidental, consequential (including lost profit),
or other damages based in contract, tort or otlserwiechTools shall have no liability with
respect to the content of the software or anytpareof, including but not limited to errors or
omissions contained therein, libel, infringemerftaghts of publicity, privacy, trademark
rights, business interruption, personal injuryslo$ privacy, moral rights or the disclosure of
confidential information.

3. Use and Redistribution
You may use the files included in this Plugin Deyars Kit to develop DigiView plugins for
your own use. You may also distribute your deriwantks as long as the copyrights,
disclaimers and restrictions are retained in the®files and followed. Any other use is
prohibited without express, written permission fréechTools. This covers all files not
explicitly documented as 'NOT REDISTRIBUTABLE'. &lid a source file not contain a
statement listing the disclaimers and allowed ustmgefollowing must be inserted into the
file before distribution:

This source file is part of the TechTools Plugin/Blepment Kit.
Copyright (c) 2011 by TechTools

DISCLAIMERS:

- NO WARRANTIES
This software is provided 'As Is', without aapress or implied
warranty of any kind, including but not limitéo any warranties
of merchantability, noninfringement, or fitsesf a particular
purpose. The Copyright holders do not warcargssume responsibility
for the accuracy or completeness of any in&dgrom contained within
this software.

- LIMITATION OF LIABILITY
In no event shall the copyright holders bbleador any damages
(including, without limitation, lost profitfusiness interruption,
or lost information) rising out of use of olbility to use this
software, even if advised of the possibilitysoch damages. In no
event will the copyright holders be liable foss of data or for
indirect, special, incidental, consequeniiatl(iding lost profit),
or other damages based in contract, tortleeratise. The copyright
holders shall have no liability with respeztiie content of the
software or any part thereof, including but lmited to errors or
omissions contained therein, libel, infringetseof rights of publicity,
privacy, trademark rights, business interuptpersonal injury,
loss of privacy, moral rights or the disclasof confidential
information.

12/20/2011 Plug-in Developer's Guide V 1.0 Page 35



Plug-in Developer's Guide V 1.0

Use and redistribution of this software or of dedwvorks, in source or
compiled form is permitted as long as the followregtrictions are observed:

- The above copyright(s), disclaimers and thesicgens are retained in the
source files and, if distributed in compiled fonmust be duplicated in
documentation or other materials and providet wie distribution.

- The derived work is used exclusively as a plugithe TechTools DigiView
software, to process data captured with TechTioaidware.

- The copyright holders' names may not be useddorse or to promote any
product or derived works.

Any other use is prohibited without express, wntpermission from TechTools.

email: support@tech-tools.com, sales@tech-toats.co
web: www.tech-tools.com Voice:972-272-9392 FAX2-494-5814

15. Contact Information
You can contact TechTools at any of the followingners:
email:support@tech-tools.consales@tech-tools.com
web:www.tech-tools.com
Voice:972-272-9392
FAX: 972-494-5814

12/20/2011 Plug-in Developer's Guide V 1.0 Page 36



